宇宙マイクロ波背景放射(CMB) 偏光観測衛星 LiteBIRD

Slides:



Advertisements
Similar presentations
1 2012/09/21 日本天文学会 2012 年秋季年会 永田 竜( KEK 素核研 CMB ) LiteBIRD ワーキンググループ 竹井洋、福家英之、松原英雄、満田和久、山崎典子、吉田哲也、坂井真一郎、佐藤洋一、篠 崎慶亮、杉田寛之、四元和彦、河野功、野田篤司、石野宏和、樹林敦子、岐部佳朗、三澤尚.
Advertisements

並河 俊弥 (東 大) CMB の弱い重力レンズ効果精密測定に向け た方法論の構築と宇宙論への応用 筑波.
Lock Acquisition 国立天文台 新井 宏二 4th DECIGO WG 2006/5/11.
JASMINE レーザー干渉計型高精度角度・長さ変動モニターの研究開発 計画のための
観測手法と望遠鏡の 仕様について 矢野太平(理研) ●大角度はなれた同時サーベイについて ●サーベイ方法について ●観測精度について
CMB偏光観測と重力波 服部誠 (東北大学・理・天文).
CMBカメラ開発における アルミ超伝導トンネル接合素子(STJ)の基礎特性評価
2006年2月22日 宇宙重力波干渉計検討会 - 小型衛星とDECIGO - 川村静児 国立天文台
神岡宇宙素粒子研究施設の将来 Future of the Kamioka Observatory
新しいVPHグリズムおよび 櫛形格子のグリズム
宇宙マイクロ波背景輻射 Bモード偏光観測の為の小型科学衛星LiteBIRDの測定感度に関するシミュレーション
第6回 制動放射 東京大学教養学部前期課程 2012年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
SWIMS Current Status of Development
高周波観測 大田 泉 (甲南大学理工学部) 空気シャワー電波観測ワークショップ2014@甲南大
ガンマ線バースト (GRBs) ガンマ線で明るい ( keV) スパイク状の強度変動 継続時間の長いもの短いもの click
宇宙での重力波観測 (1) 宇宙での重力波観測 宇宙で観測するメリット : 他にはないサイエンスがある
新特定領域 「全波長重力波天文学のフロンティア」 第5回会合 (2005年7月30日 国立天文台, 東京)
CMB偏光観測用 超伝導カメラの開発 CMB: Cosmic Microwave Background (宇宙マイクロ波背景放射)
瀬戸直樹(京大理) CMBワークショップ 年6月8日(火) 国立天文台
CMB非等方性による、 インフレーション起源の背景重力波 のもつ偏極成分の検出法
目次 多重薄板型X線望遠鏡 レプリカ法とは 反射鏡の評価 現状と課題
2m電波望遠鏡の製作と 中性水素21cm線の検出
低周波重力波探査のための ねじれ振り子型重力波検出器
アルミ超伝導トンネル接合素子(Al-STJ)を 用いたCMB偏光カメラの開発
ミリ波検出にむけた超伝導トンネル接合素子検出器(STJ)の開発研究
JARE54 Dome Fuji Astronomy
神戸大大学院集中講義 銀河天文学:講義6 特別編 観測装置の将来計画
ASTE搭載用ミリ波サブミリ波帯 多色ボロメータカメラ光学系の開発
XTE/ASM, PCA, HEXTEの感度と観測成果
NeXT衛星 宇宙の非熱的エネルギーの源を探る focal length m
小型科学衛星を用いた宇宙背景放射(CMB)偏光精密測定計画 原始重力波の発見法:CMB温度から偏光度へ
ーJapan Astrometry Satellite Mission for INfrared Exploration-
GRASPを用いた CMB観測LiteBIRD衛星 光学系の検討
アルミ超伝導トンネル接合素子(AL-STJ) を用いたCMB偏光カメラの開発 -エネルギーギャップとアルミの 厚さの相関、最適化-
AIRT40+TONIC2 for JARE53/54 Winter-over Observation 新光学系の提案(最終案)
クワッドリッジホーンアンテナ (広帯域フィード) を 用いた電波望遠鏡の測地VLBIにおける性能評価
小型科学衛星LiteBIRDのシステム要求分析II
CMB偏光観測衛星: LiteBIRD サイエンスと光学設計について 松村知岳, LiteBIRD collaborations
巨大電波銀河 3C 35 の「すざく」による観測 磯部直樹 (京都大学, kyoto-u. ac
放射光実験施設での散乱X線測定と EGS5シミュレーションとの比較
重力・重力波物理学 安東 正樹 (京都大学 理学系研究科) GCOE特別講義 (2011年11月15-17日, 京都大学) イラスト
1-P-6 パラボラ反射板を用いたアクティブマイクロフォンによる方向推定
安東 正樹池本尚史,小林洸,坪野公夫 (東京大学 理学系研究科)
瀬戸直樹 (京大理) 第7回スペース重力波アンテナDECIGOワークショップ 国立天文台
松原英雄、中川貴雄(ISAS/JAXA)、山田 亨、今西昌俊、児玉忠恭、中西康一郎(国立天文台) 他SPICAサイエンスワーキンググループ
CTA報告19: CTA時代におけるSNR研究
XMM-Newton 衛星による電波銀河 Fornax A の東ローブの観測
LiteBIRD 宇宙マイクロ波背景放射(CMB)偏光観測衛星 :計画の概要 KEK宇宙マイクロ波背景放射観測グループ 羽澄昌史
小型JASMINE計画の状況       矢野太平(国立天文台)       丹羽佳人(京大).
小型衛星パスファインダーによる総合的試験
瀬戸直樹(京大理) DECIGO WS 名古屋大学
京大他、東大やアデレード大学など日豪の16機関が共同で、オーストラリアの砂漠地帯に望遠鏡4台を建設しTeVγ線を観測している。
22/43 GHz帯フィルタによる 野辺山45 m鏡二周波同時観測の現状について
DECIGOで探る宇宙背景重力波 樽家 篤史 工藤 秀明 (UCSB), 姫本 宣朗 (東大理) (東大理) 2006/6/11
偏光X線の発生過程と その検出法 2004年7月28日 コロキウム 小野健一.
F/3.5 R-spec H.Akitaya CCD Camera Video Camera F/3.5 F/1.3
宇宙の初期構造の起源と 銀河間物質の再イオン化
滝脇知也(東大理)、固武慶(国立天文台)、佐藤勝彦(東大理、RESCEU)
CMB偏光観測衛星: LiteBIRD サイエンスと光学設計について 松村知岳, LiteBIRD collaborations
第17回DECIGOワークショップ 2018.11.1 川村静児(名古屋大学)
第12回 銀河とその活動現象 東京大学教養学部前期課程 2017年度Aセメスター 宇宙科学II 松原英雄(JAXA宇宙研)
JASMINEワークショップ March 6-7,2003 松原英雄(宇宙研)
小型科学衛星LiteBIRD におけるスキャンの最適化
スペース重力波アンテナ DECIGO計画Ⅷ (サイエンス)
神岡での重力波観測 大橋正健 and the LCGT collaboration
ALMAへの期待 -埋れたAGNの探査から-
音響伝達特性を用いたシングルチャネル音源方向推定
ASTE搭載用ミリ波サブミリ波帯 多色ボロメータカメラ光学系の開発 竹腰達哉 北海道大学修士課程2年 Collaborators:
宇宙重力波干渉計検討会 -小型衛星とDECIGO- (2006年02月24日 国立天文台, 東京)
ASTE望遠鏡を用いたVLBI観測の ための超伝導230GHz帯受信機開発
Presentation transcript:

宇宙マイクロ波背景放射(CMB) 偏光観測衛星 LiteBIRD 羽澄昌史、KEK 宇宙背景放射観測グループ 松村知岳, カリフォルニア工科大学(高エネ研) LiteBIRD collaborations 宇宙電波懇談会シンポジウム                       2009年9月25日

Introduction 宇宙電波懇談会シンポジウム                       2009年9月25日

Introduction 原始重力波 CMB偏光度マップ パワースペクトル Bモード 原始重力波の検出は、宇宙論、素粒子論双方に大きく寄与する 宇宙論:インフレーションのより定量的な検証 素粒子:超高エネルギー(LHCの一兆倍)の物理 WMAP 原始重力波 CMB偏光度マップ パワースペクトル W. Hu et al. astro-ph/0210096 Bモード 宇宙電波懇談会シンポジウム                       2009年9月25日

Science goals インフレーションによるB-modeスペクトル ( l  200 ) を詳細に観測。 LensingによるB-modeスペクトル ( l  200 ) も観測でき、インフレーションによるB-modeスペクトルとの混乱を分離。 全天観測により宇宙再電離の時期を判定。 60−300GHzをカバーし前景放射(シンクロトロン放射、ダスト放射)を同一実験で観測する。 EE r = 0.1 BB 宇宙電波懇談会シンポジウム                       2009年9月25日

Science goals インフレーションによるB-modeスペクトル ( l  200 ) を詳細に観測。 LensingによるB-modeスペクトル ( l  200 ) も観測でき、インフレーションによるB-modeスペクトルとの混乱を分離。 全天観測により宇宙再電離の時期を判定。 60−300GHzをカバーし前景放射(シンクロトロン放射、ダスト放射)を同一実験で観測する。 EE EE r = 0.01 BB 宇宙電波懇談会シンポジウム                       2009年9月25日

Science goals インフレーションによるB-modeスペクトル ( l  200 ) を詳細に観測。 LensingによるB-modeスペクトル ( l  200 ) も観測でき、インフレーションによるB-modeスペクトルとの混乱を分離。 全天観測により宇宙再電離の時期を判定。 60−300GHzをカバーし前景放射(シンクロトロン放射、ダスト放射)を同一実験で観測する。 ノイズスペクトル EE Planck LiteBIRD r = 0.1 BB 宇宙電波懇談会シンポジウム                       2009年9月25日

Science goals インフレーションによるB-modeスペクトル ( l  200 ) を詳細に観測。 LensingによるB-modeスペクトル ( l  200 ) も観測でき、インフレーションによるB-modeスペクトルとの混乱を分離。 全天観測により宇宙再電離の時期を判定。 60−300GHzをカバーし前景放射(シンクロトロン放射、ダスト放射)を同一実験で観測する。 ノイズスペクトル EE Planck LiteBIRD r = 0.1 BB 宇宙電波懇談会シンポジウム                       2009年9月25日

Science goals Search for r=O(0.01) is well motivated Search for r=O(0.001) is comprehensive Pagano-Cooray-Melchiorri-Kamionkowski 2007 Current upper limit r = T/S (テンソル・スカラー比) 重力波の相対的な大きさ) inflation potential 宇宙電波懇談会シンポジウム                       2009年9月25日

LiteBIRD 目的: CMBのB-modeの偏光観測 サイエンス: インフレーションのエネルギースケール、原始重力波の観測、宇宙再電離 Lite (light) Satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection 目的: CMBのB-modeの偏光観測 サイエンス: インフレーションのエネルギースケール、原始重力波の観測、宇宙再電離 プラットフォーム: 小型科学衛星 2008年9月JAXA小型科学衛星WGとして承認 宇宙電波懇談会シンポジウム                       2009年9月25日

LiteBIRD Collaboration 佐藤洋一,杉田寛之 (ARD/JAXA) 松村知岳(Caltech) 福家英之, 松原英雄,満田和久,吉田哲也(ISAS/JAXA) 片山伸彦,佐藤伸明,鈴木敏一,住澤一高,田島治,都丸隆行,羽澄昌史,長谷川雅也,樋口岳雄,吉田光弘 (高エネ研) 大田泉 (近畿大) 鵜澤佳徳,関本裕太郎,野口卓 (国立天文台) Julian Borrill (LBNL) 石野宏和,樹林敦子 (岡山大理) 柳沼えり (総研大) 茅根裕司,服部誠 (東北大理) William L. Holzapfel,Bradley R. Johnson,Adrian T. Lee,Paul L. Richards, Huan T. Tran (UC Berkeley) 小松英一郎 (UT Austin) コンサルタント:  小玉英雄(KEK)、中川貴雄(JAXA)、川邊良平(NAOJ) 所属機関名のアルファベット順 宇宙電波懇談会シンポジウム                       2009年9月25日

LiteBIRD Collaboration 佐藤洋一,杉田寛之 (ARD/JAXA) 松村知岳(Caltech)  Planck, BICEP, EBEX 福家英之, 松原英雄,満田和久,吉田哲也(ISAS/JAXA) 片山伸彦,佐藤伸明,鈴木敏一,住澤一高,田島治,都丸隆行,羽澄昌史,長谷川雅也,樋口岳雄,吉田光弘 (高エネ研)  QUIET, PolarBear 大田泉 (近畿大) 鵜澤佳徳,関本裕太郎,野口卓 (国立天文台) Julian Borrill (LBNL)  Planck 石野宏和,樹林敦子 (岡山大理) 柳沼えり (総研大) 茅根裕司,服部誠 (東北大理)  QUIET William L. Holzapfel,Bradley R. Johnson,Adrian T. Lee,Paul L. Richards, Huan T. Tran (UC Berkeley)  PolarBear, EPIC, BICEP, SPT 小松英一郎 (UT Austin)  WMAP コンサルタント:  小玉英雄(KEK)、中川貴雄(JAXA)、川邊良平(NAOJ) 所属機関名のアルファベット順 宇宙電波懇談会シンポジウム                       2009年9月25日

Design Concept アメリカには多くの地上/気球実験が現在観測中 アメリカ/ヨーロッパでもCMB偏光衛星実験を提唱 大型衛星実験 LiteBIRDでは 小型衛星に搭載するために軽量化及びコンパクト化 質量 < 400kg, 全長 < 1m 検出器の数を増やし統計誤差を下げるための広い焦点面 検出器数 >1000, 直径 = 30cm, 視差 30°×30° 前景放射を差し引くための広い帯域をカバーした光学系及び焦点面 帯域 60〜300GHz (5〜1mm) 偏光の系統誤差を減らすためのシンプルな光学系 1/2波長板変調機はサファイアを用いる。直径 < 30cm 全てのバンドを1テレスコープで (多色焦点面) 宇宙電波懇談会シンポジウム                       2009年9月25日

Detector technology Antenna coupled TES bolometer lenslets ~30cm lenslets 150GHz-220GHz diplexer TES 8-band channelizer Development at UC Berkeley 13 宇宙電波懇談会シンポジウム                       2009年9月25日

Foreground and focal plane real estate             Multi-chroicアンテナを用いた検出器は一つのピクセルで複数の周波数を観測できる。 From A. Lee (UC Berkeley) Freq (GHz) Beam (arcmin) Ndet NET (mKs) wp-0.5 (mK-arcmin) 90 60 400 38 3.5 150 36 600 34 3.2 300 18 200 110 10.1 total - 1200 2.3 Center: 300GHz, 4.2 cm 1st ring: 150GHz, 15cm 2nd ring: 90 GHz, 24cm Center: 300GHz, D=4.2 cm 1st ring: 90 + 150GHz, D=20cm 宇宙電波懇談会シンポジウム                       2009年9月25日

Foreground and focal plane real estate 前景放射を差し引くために必要な周波数帯域は? バンド数 バンドの位置 各バンドの感度 CMB-pol, EPIC-LCの例  Freq (GHz) Beam (arcmin) Ndet NET (mKs) wp-0.5 (mK-arcmin) 30 155 8 80 87 40 116 54 71 29 60 77 128 16 90 52 512 7.0 135 34 49 6.6 200 23 576 6.9 300 92 12 total 2366 3.6 Inside: 90, 135, 200, 300 GHz, D=23cm Outside: 30, 40, 60GHz, D=31 cm 宇宙電波懇談会シンポジウム                       2009年9月25日

Optics telescope Zemaxを使った光学デザイン。 光軸対称の屈折望遠鏡 視野: 30°×30° 視野: 30°×30° Strehl ratio > 0.8 (回折限界) を平面焦点面全域 @ 300GHzで実現。 レンズ: 高密度ポリエチレン (高密度ポリエチレンの放射耐性、酸化への影響によってはSiレンズを用いる。) 光学系の温度は2Kに保つ 1/2波長板を用いた偏光変調 偏光角度を回転 メインビームの系統誤差 サイドローブをコントロールする IR blocker Aperture 直径 = 30 cm          1/2波長板 HDPE 対物レンズ 75cm HDPE 接眼レンズ アンテナ結合型検出器 焦点面 直径 = 30cm  宇宙電波懇談会シンポジウム                       2009年9月25日

Broadband coverage 周波数の帯域幅 1/2波長板の変調効率 HDPE レンズ 1/2波長板の変調効率 1/2波長板に対する7層の反射防止膜 HDPE レンズ 焦点面 宇宙電波懇談会シンポジウム                       2009年9月25日

Reflective telescope 反射型望遠鏡 + レンズなし  反射防止膜を必要としない + コンパクト - 光軸非対称 + レンズなし  反射防止膜を必要としない + コンパクト - 光軸非対称 - アパチャーの位置とサイズ - far sidelobe IR blocker HWP 30cm From “Study of the Experimental Probe of Inflationary Cosmology - Intermediate Mission for NASA’s Einstein Inflation Probe ” 宇宙電波懇談会シンポジウム                       2009年9月25日

Nutshell 宇宙電波懇談会シンポジウム                       2009年9月25日

Power and weight guesstimation for near-earth orbit option Mission part Weight(kg) Power (W) Focal plane (detector,optics) 60 Mission part electronics (for detector) 20 100 Baffle, structure 40 Cryo-harness 5 Sub-Kelvin refrigerator (ADR) 2K refrigerator (JT+starling) 30 160 Total for mission part 175 280 Bus part Structure, thermal control, etc. 50 Solar panel, electronics Data acquisition, telemetry Attitude control (AC) Total for bus part 150 210 Total (mission + bus) 325 490 20 宇宙電波懇談会シンポジウム                       2009年9月25日

LiteBIRD Specifications Item Specification Lifetime > 2 years ( 5 years for the mission part) Orbit S-E L2, or near-earth sun-synchronous orbit AC < 5 arcmin (i.e. < 1/10 x beamsize) Telemetry 2Mbps Weight Mission part < 200kg, total < 400kg Power Mission part < 200W, total < 500W Cooling 100mK w/ SPICA-type JT+starling (+ He3 sorption) + ADR Focal plane Superconducting detector (TES or STJ) Sensitivity Total NET < 1mKs Frequencies 90GHz and 150GHz with a sufficient number of pixels and angular resolution (< 1 deg), + 45GHz + 300GHz as much as possible Modulation Satellite rotation + more modulation methods 宇宙電波懇談会シンポジウム                       2009年9月25日

まとめ 今後の課題 LiteBIRD (2018) COBE (1989) WMAP (2001) Planck (2009) LiteBIRDはインフレーションによるB-modeスペクトルを観測する。 (インフレーション、原始重力波、宇宙再電離、重力レンズ) コンパクトな望遠鏡を用い、小型衛星への搭載を目標。 系統誤差 光学系の評価 反射防止膜の帯域 v.s. 前景放射のための必要帯域 スキャンと軌道の選択(L2 vs 地球周回)/最適化 今後の課題 宇宙電波懇談会シンポジウム                       2009年9月25日

まとめ 今後の課題 LiteBIRD (2018) COBE (1989) WMAP (2001) Planck (2009) LiteBIRDはインフレーションによるB-modeスペクトルを観測する。 (インフレーション、原始重力波、宇宙再電離、重力レンズ) コンパクトな望遠鏡を用い、小型衛星への搭載を目標。 系統誤差 光学系の評価 反射防止膜の帯域 v.s. 前景放射のための必要帯域 メインビームの特性、サイドローブの特性 ⇔ スキャンと軌道の選択(L2 vs 地球周回)/最適化 今後の課題 宇宙電波懇談会シンポジウム                       2009年9月25日

Beam characterization From Shimon et al. From EPIC report Bock et al. 必要とされている系統誤差範囲以内のビームの特性を得られるか? 光学系シミュレーション → yes メインビーム: 現実的なレンズの品質や反射防止膜 サイドローブ:  1/2波長板を使う事によりビームの差分を減らす。 → BICEP、QUITE、EBEX、PolarBear 宇宙電波懇談会                           2009年9月25日

Focal plane 検出器はAl STJかTESボロメターを用いたアンテナ結合型を仮定。 IR blocker Aperture 直径 = 30 cm          1/2波長板 HDPE 対物レンズ Development at UC Berkeley 75cm HDPE 接眼レンズ 焦点面 直径 = 30cm  アンテナ結合型検出器 焦点面 直径 = 30cm  日本物理学会 甲南大学        9月10 −13日