2002.2.8 日本応用磁気学会第123回研究会 磁気光学材料の基礎と 光通信への応用 東京農工大学 佐藤勝昭.

Slides:



Advertisements
Similar presentations
大学院物理システム工学専攻 2004 年度 固体材料物性第 8 回 -光と磁気の現象論 (3) - 佐藤勝昭ナノ未来科学研究拠点.
Advertisements

基礎セミ第7章 (1-4) 偏光のしくみと応用 12T5094E 龍吟. 目次 光の偏光とは? 複屈折とは? 偏光を作り出すもの (偏光プリズム、偏光板、位相板)
無機化学 I 後期 木曜日 2 限目 10 時半〜 12 時 化学専攻 固体物性化学分科 北川 宏 301 号室.
物理システム工学科3年次 物性工学概論 第火曜1限0023教室 第4回半導体の色
生体分子解析学 2017/3/2 2017/3/2 機器分析 分光学 X線結晶構造解析 質量分析 熱分析 その他機器分析.
電磁気学Ⅱ Electromagnetics Ⅱ 6/5講義分 電磁波の反射と透過 山田 博仁.
導波路放出光解析による量子細線の光吸収測定
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
材料系物理工学 第6回 磁気付随現象 佐藤勝昭.
木下基、Manyalibo J. MatthewsA、秋山英文
ファブリ・ペローエタロンを用いた リング型外部共振器付半導体レーザーの 発振周波数制御
小笠原智博A*、宮永崇史A、岡崎禎子A、 匂坂康男A、永松伸一B、藤川高志B 弘前大学理工学部A 千葉大大学院自然B
物性物理学特論 第9回講義 磁気光学効果の応用 佐藤勝昭.
物理システム工学科3年次 「物性工学概論」 第5回半導体の色(2) ー半導体の電気的性質ー
工学系大学教育連携協議会単位互換eラーニング科目 磁気光学入門第1回 -この講義で学ぶこと-
CRL 高周波磁界検出用MOインディケーターの合成と評価 1. Introduction 3. Results and Discussion
量子ビーム基礎 石川顕一 6月 7日 レーザーとは・レーザーの原理 6月21日 レーザー光と物質の相互作用
工学系12大学大学院単位互換e-Learning科目 磁気光学入門第3回:電磁気学に基づく磁気光学の理論(1)
大学院工学研究科 磁性工学特論第7回 -光と磁気(1)-
Ⅰ 孤立イオンの磁気的性質 1.電子の磁気モーメント 2.イオン(原子)の磁気モーメント 反磁性磁化率、Hund結合、スピン・軌道相互作用
Ⅲ 結晶中の磁性イオン 1.結晶場によるエネルギー準位の分裂 2.スピン・ハミルトニアン
Ⅳ 交換相互作用 1.モット絶縁体、ハバード・モデル 2.交換相互作用 3.共有結合性(covalency)
前回の内容 結晶工学特論 第5回目 Braggの式とLaue関数 実格子と逆格子 回折(結晶による波の散乱) Ewald球
大学院理工学研究科 2004年度 物性物理学特論第7回 -磁気光学効果の電子論(3):バンド理論-
大学院工学研究科 磁性工学特論第11回 -磁気光学効果の応用-
大学院理工学研究科 2004年度 物性物理学特論第8回 -磁気光学スペクトル-
MBE成長GaAs表面の平坦化とそのAFM観察
大学院物理システム工学専攻2004年度 固体材料物性第11回 -磁気光学効果の応用(2)-
大学院物理システム工学専攻2004年度 固体材料物性第9回 -磁気光学効果測定法-
物理システム工学科3年次 「物性工学概論」 第10回光エレクトロニクス(3) 半導体レーザと光通信
結晶工学特論 第2回目 前回の内容 半導体デバイス LED, LD, HEMT 半導体デバイスと化合物半導体 種類の豊富さ、直接遷移型、
佐藤勝昭研究室 OB会2003年11月22日  磁性MOD班.
大学院物理システム工学専攻2004年度 固体材料物性第12回 -磁気光学効果の電子論-
工学系大学院単位互換e-ラーニング科目 磁気光学入門第10回:磁気光学スペクトルと電子構造
大学院理工学研究科 2004年度 物性物理学特論第1回 -磁気光学効果とは何か-
大学院物理システム工学専攻2004年度 固体材料物性第5回 -光と磁気(1)-
Fig. Crystal structure of Nd2Fe14B
大学院物理システム工学専攻2004年度 固体材料物性第7回 -光と磁気の現象論(2)-
電磁気学C Electromagnetics C 5/28講義分 電磁波の反射と透過 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 6/30講義分 電磁波の反射と透過 山田 博仁.
大学院理工学研究科 2004年度 物性物理学特論第4回 -光と磁気の現象論(3):反射とKerr効果-
量子力学の復習(水素原子の波動関数) 光の吸収と放出(ラビ振動)
物理システム工学科3年次 「物性工学概論」 第1回講義 火曜1限67番教室
大学院理工学研究科 2004年度 物性物理学特論第2回 光と磁気の現象論(1): 誘電率テンソル
光スイッチングデバイス.
大学院工学研究科 磁性工学特論第10回 -磁気光学効果の測定法-
課題演習B1 「相転移」 相転移とは? 相転移の例 担当 不規則系物理学研究室 松田和博 (准教授) 永谷清信 (助教)
電磁気学Ⅱ Electromagnetics Ⅱ 5/23, 5/30講義分 物質中でのMaxwell方程式 電磁波の反射と透過 山田 博仁.
アセチリド錯体を構成要素とする 分子性磁性体の構築と その構造及び磁気特性の評価
大学院理工学研究科 2004年度 物性物理学特論第5回 -磁気光学効果の電子論(1):古典電子論-
物理システム工学科3年次 「物性工学概論」 第4回半導体の色 ー半導体の光学的性質ー
機器分析学 旋光度 旋光分散スペクトル 円偏光二色性(CD)スペクトル.
偏光X線の発生過程と その検出法 2004年7月28日 コロキウム 小野健一.
課題演習B1 「相転移」 相転移とは? 相転移の例 担当 不規則系物理学研究室 八尾 誠 (教授) 松田和博 (准教授) 永谷清信 (助教)
ディラック電子系分子性導体への静電キャリア注入を目的とした電界効果トランジスタの作製および物性評価
大学院物理システム工学専攻2004年度 固体材料物性第6回 -光と磁気の現象論-
13族-遷移金属間化合物の熱電材料としての応用
Bi置換したCaMnO3の結晶構造と熱電特性
工学系大学院単位互換e-ラーニング科目 磁気光学入門第7回 -磁気光学効果の電子論(2):量子論-
課題演習B1 「相転移」 相転移とは? 相転移の例 担当 不規則系物理学研究室 松田和博 (准教授) 永谷清信 (助教)
電磁気学Ⅱ Electromagnetics Ⅱ 5/22, 5/29講義分 物質中でのMaxwell方程式 電磁波の反射と透過 山田 博仁.
工学系大学院単位互換e-ラーニング科目 磁気光学入門第7回 -磁気光学効果の電子論(2):量子論-
講師:佐藤勝昭 (東京農工大学大学院教授)
第20回応用物理学科セミナー 日時: 2月25日(木) 16:10 – 17:40 場所:葛飾キャンパス研究棟8階第2セミナー室
Magneto-Optics Team 2003年度 佐藤勝昭研究室 OB会 Linear magneto-optics group
電磁気学Ⅱ Electromagnetics Ⅱ 6/11, 6/18講義分 物質中でのMaxwell方程式 電磁波の反射と透過 山田 博仁.
第39回応用物理学科セミナー 日時: 12月22日(金) 14:30 – 16:00 場所:葛飾キャンパス研究棟8F第2セミナー室
電磁気学Ⅱ Electromagnetics Ⅱ 6/7講義分 電磁波の反射と透過 山田 博仁.
60Co線源を用いたγ線分光 ―角相関と偏光の測定―
Presentation transcript:

2002.2.8 日本応用磁気学会第123回研究会 磁気光学材料の基礎と 光通信への応用 東京農工大学 佐藤勝昭

CONTENTS はじめに 磁気光学効果の物理的起源 光通信における磁気光学デバイスの位置づけ 光アイソレータ・サーキュレータの原理と構成 アイソレータ・サーキュレータ材料 次世代磁気光学デバイスの開発動向 おわりに

はじめに 最近の情報通信技術におけるブロードバンド化 ←波長多重通信(WDM)の寄与大 家庭への光ファイバ導入 :アイソレータなど非相反光回路素子の需要 このledcture:磁気光学効果の基礎 光通信用磁気光学デバイス・材料

磁気光学効果の物理的起源 光=電磁波 電磁波の伝搬現象:マクスウェル方程式 媒体:連続体とみなす→誘電率テンソル 磁化の効果→非対角成分 固有値問題→複素屈折率:2つの固有値 固有解:左右円偏光 左右円偏光の位相差→旋光 左右円偏光の振幅差→円二色性

ファラデー効果 透過の磁気光学効果 自然旋光性との違い ヴェルデ定数 磁気旋光性(ファラデー回転)θF 磁気円二色性(ファラデー楕円率)ηF ファラデー効果は非相反(往復すると2倍回転) 自然旋光性は相反(往復すると回転ゼロ) ヴェルデ定数 θF=VlH (反磁性体または常磁性体)

磁性体のファラデー回転角 磁性体 回転角 (deg) 性能指数(deg/dB) 波長 (nm) 温度 (K) 磁界 (T) 文献 Fe 3.825・105   578 RT 2.4 1.11) Co 1.88・105 546 〃 2 Ni 1.3・105 826 120 K 0.27 Y3Fe5O12 250 1150 100 K 1.12) Gd2BiFe5O12 1.01・104 44 800 1.13) MnSb 2.8・105 500 1.14) MnBi 5.0・105 1.43 633 1.15) YFeO3 4.9・103 1.16) NdFeO3 4.72・104 1.17) CrBr3 1.5K 1.18) EuO 5・105 104 660 4.2 K 2.08 1.19) CdCr2S4 3.8・103 35(80K) 1000 4K 0.6 1.20)

ファラデー回転と楕円率 主軸の傾き:回転角 楕円の短軸と長軸の比:楕円率 直線偏光が入射したとき 出射光が楕円偏光になり 磁界  出射光が楕円偏光になり (磁気円二色性)  その主軸が回転する効果   (磁気旋光:Faraday回転) 磁界 楕円偏光 直線偏光

電磁気学と磁気光学効果 マクスウェル方程式 誘電率テンソル 磁化された等方性媒質の 誘電テンソル

固有値と固有関数 固有方程式 固有値 固有関数:左右円偏光 非対角成分がないとき:左右円偏光の応答に差がない 磁気光学効果は生じない

磁気光学の式 磁気光学効果には対角・非対角両成分が寄与

磁気光学効果の現象論 直線偏光は等振幅等速度の左右円偏光に分解できる 媒質を通ることにより左円偏光の位相 と右円偏光の位相が異なると旋光する 一般には、主軸の傾いた楕円になる 媒質を通ることにより左円偏光の振幅 と右円偏光の振幅が異なると楕円になる

磁気光学効果の 量子論 磁化の存在→スピン状態の分裂 スピン軌道相互作用→軌道状態の分裂 大きな磁気光学効果の条件 左右円偏光の選択則には影響しない スピン軌道相互作用→軌道状態の分裂 右(左)回り光吸収→右(左)回り電子運動誘起 大きな磁気光学効果の条件 遷移強度の強い許容遷移が存在すること スピン軌道相互作用の大きな元素を含む 磁化には必ずしも比例しない

電子分極のミクロな扱い E 電界の 摂動を受けた 波動関数 無摂動系の 波動関数 s-電子的 p-電子的 無摂動系の固有関数で展開 = + + ・・ s-電子的 p-電子的 無摂動系の固有関数で展開

円偏光の吸収と電子構造 py-orbital px-orbital p+=px+ipy Lz=+1 p-=px-ipy Lz=0 s-like

スピン軌道相互作用の重要性 Jz=-3/2 Jz=-1/2 L=1 Jz=+1/2 LZ=+1,0,-1 Jz=+3/2 Jz=-1/2 交換相互作用 +スピン軌道相互作用 磁化なし 交換分裂

反磁性型スペクトル ”xy ’xy 励起状態 基底状態 0 1 2  Lz=0 Lz=+1 Lz=-1 1+2 磁化の無いとき 磁化のあるとき Lz=0 Lz=+1 Lz=-1 1+2 光子エネルギー ’xy ”xy

誘電率の非対角成分のピーク値 大きな磁気光学効果を持つ条件: ・光学遷移の振動子強度 f が大きい ・スピン軌道相互作用が大きい ・遷移のピーク幅が狭い

磁性ガーネット 磁性ガーネット: 3つのカチオンサイト: YIG(Y3Fe5O12)をベースとする鉄酸化物;Y→希土類、Biに置換して物性制御 3つのカチオンサイト: 希土類:12面体位置を占有 鉄Fe3+:4面体位置と8面体位置、反強磁性結合 フェリ磁性体 ガーネットの結晶構造

YIGの光吸収スペクトル 電荷移動型(CT)遷移(強い光吸収)2.5eV 配位子場遷移 (弱い光吸収) 4面体配位:2.03eV 8面体配位:1.77eV,1.37eV,1.26eV

磁性ガーネットの3d52p6電子状態 品川による Jz= J=7/2 3/2 6P (6T2, 6T1g) 5/2 7/2 -7/2 - 6S (6A1, 6A1g) 6P (6T2, 6T1g) without perturbation spin-orbit interaction tetrahedral crystal field (Td) octahedral (Oh) J=7/2 J=5/2 J=3/2 5/2 -3/2 - Jz= 3/2 7/2 5/2 -5/2 -3/2 -7/2 P+ P- 品川による

Faraday rotation (arb. unit) Faraday rotation (deg/cm) YIGの磁気光学スペクトル experiment calculation 300 400 500 600 wavelength (nm) Faraday rotation (arb. unit) -2 +2 Faraday rotation (deg/cm) 0.4 x104 0.8 -0.4 (a) (b) 電荷移動型遷移を多電子系として扱い計算。

Bi置換磁性ガーネット Bi:12面体位置を置換 ファラデー回転係数:Bi置換量に比例して増加。 Biのもつ大きなスピン軌道相互作用が原因。

Bi置換YIGの磁気光学スペクトル 実験結果と計算結果 スペクトルの計算 3d=300cm-1, 2p=50cm-1 for YIG 2p=2000cm-1 for Bi0.3Y2.7IG K.Shinagawa:Magneto-Optics, eds. Sugano, Kojima, Springer, 1999, Chap.5, 137

II-VI系希薄磁性半導体の結晶構造と組成存在領域   II-VI系希薄磁性半導体の結晶構造と組成存在領域 Material Crystal structure Range of Composition Zn1-xMnxS ZB WZ 0<x<0.10 0.10<x0.45 Zn1-xMnxSe 0<x0.30 0.30<x0.57 Zn1-xMnxTe 0<x0.86 Cd1-xMnxS 0<x0.45 Material Crystal structure Range of Composition Cd1-xMnxSe WZ 0<x0.50 Cd1-xMnxTe ZB 0<x0.77 Hg1-xMnxS 0<x0.37 Hg1-xMnxSe 0<x0.38 Hg1-xMnxTe 0<x0.75

II-VI DMS の格子パラメータ EXAFS XRD J. K. Furdyna et al., J. Solid State Chem. 46, (1983) 349 B. A. Bunker et al., Diluted Magnetic (Semimagnetic) Semiconductors, (MRS., Pittsburg, 1987) vol.89, p. 231

Cd1-xMnxTeにおける バンドギャップ のMn濃度依存性

Cd1-xMnxTeのバルク成長 ブリッジマン法 過剰融液組成→相晶を防ぐ効果 出発原料: Cd, Mn, Te元素 石英管に真空封入 4 mm/hの速度でるつぼを降下させる。 融点: 1100°C WZ (高温相) → ZB (低温相) 相転位(温度低下) 過剰融液組成→相晶を防ぐ効果

CdMnTeの磁気光学スペクトル II-VI族希薄磁性半導体:Eg(バンドギャップ)がMn濃度とともに高エネルギー側にシフト 磁気ポーラロン効果(伝導電子スピンと局在磁気モーメントがsd相互作用→巨大g値:バンドギャップにおける磁気光学効果 小柳らによる Furdynaによる

光通信における磁気光学デバイスの位置づけ 戻り光は、LDの発振を不安定にしノイズ発生の原因になる→アイソレータで戻り光を阻止。 WDMの光アドドロップ多重(OADM)においてファイバグレーティングと光サーキュレータを用いて特定波長を選択 EDFAの前後にアイソレータを配置して動作を安定化。ポンプ用レーザについても戻り光を阻止

半導体レーザモジュール用アイソレータ Optical isolator for LD module Optical fiber Signal source Laser diode module

光アドドロップとサーキュレータ

光ファイバ増幅器と アイソレータ

今後の展開 導波路形アイソレータ 小型・軽量・低コスト化 半導体レーザとの一体化 サイズ:波長と同程度→薄膜/空気界面、あるいは、薄膜/基板界面の境界条件重要 タイプ: 磁気光学材料導波路形:材料の高品質化重要 リブ形 分岐導波路形

導波路形アイソレータ 腰塚による

マッハツェンダー形アイソレーター

リブ形アイソレータ

半導体とアイソレータの一体化 貼り合わせ法 希薄磁性半導体の利用 半導体上に直接磁性ガーネット膜作製→格子不整合のため困難 ガーネット膜を作っておき、半導体基板に貼り合わせる方法が提案されている 希薄磁性半導体の利用 DMSの結晶構造:GaAsと同じ閃亜鉛鉱型→ 半導体レーザとの一体化の可能性。 導波路用途の面内光透過の良質の薄膜作製困難。 安藤ら:GaAs基板上にMBE法でCdMnTeの薄膜を作製。バッファ層:ZnTe, CdTe層