Presentation is loading. Please wait.

Presentation is loading. Please wait.

電磁気学C Electromagnetics C 7/1講義分 光導波路と光共振器 山田 博仁.

Similar presentations


Presentation on theme: "電磁気学C Electromagnetics C 7/1講義分 光導波路と光共振器 山田 博仁."— Presentation transcript:

1 電磁気学C Electromagnetics C 7/1講義分 光導波路と光共振器 山田 博仁

2 光共振器 q = 3 q = 1 q = 2 完全導体による平行平板間に存在することができる電磁波の波長は離散的になり、 完全導体
z = 0 z = L (q = 1, 2, 3 ‥) で与えられた。このように、完全導体の平行平板によるFabry-Perot共振器によって 電磁波は量子化され、この量子化された電磁波をモードと呼ぶ。(q はモード番号) 光の場合は、完全導体の代わりに、2枚の平行平面鏡によりFabry-Perot共振器を構成し、レーザーの光共振器などに広く用いられている。 光ビーム 平行平面鏡 レーザーの光共振器の概略

3 Fabry-Perot (FP)共振器の共振モード
共振器長 L のFP共振器内に立つ定在波の腹の数(モード番号 q )と共振器内での光の波長 λ との間には、      の関係がある モード番号が十分大きい(q >>1)場合に、隣り合うモード間での共振波長の差 Δλ は、 L Δλ Δλ 半導体レーザー λ q+2 q+1 q q-1 q-2 FP共振器の共振モード 発振波長 l 発振スペクトル q: モード番号 1,2 ‥‥ neff: 半導体の屈折率 FP共振器型半導体レーザーの構造 出展:

4 光導波路 コア クラッド n2 n1> n2 n1 光ファイバー 屈折率分布 n1> n2 n2 n1 屈折率分布 コア
スラブ導波路 屈折率分布 n1 n2 n1> n2 コア クラッド

5 光導波路が光を導くメカニズム n2 n1 φ1 j2 入射波 屈折波 反射波 n1< n2の場合 n2 n1 n1> n2の場合
φ2 入射波 屈折波 反射波 全反射 臨界角 qc Snellの法則 全反射 n1 n2 n1> n2 放射モード qc 2θmax 光が伝搬可能な入射角度の範囲 開口数: NA= sin(θmax)

6 全反射角 コアとクラッド界面での全反射角θcは、前スライドの臨界角より で与えられるが、 ここで、 と置いたが、Δは比屈折率差と呼ばれている
ここで、        と置いたが、Δは比屈折率差と呼ばれている 従って、n1と n2との差が小さい時、全反射角 θcは以下の式で与えられる さらに、導波路が受け入れることのできる受光角(2θmax)は、 また特に、 を開口数 (Numerical Aperture)という

7 導波路内での光伝搬 屈折率 n の媒質中 ・光の速度: 1/n ・光の波長: 1/n ・波数: n 倍
クラッドへの光の浸み出し ϕ: Goos-Haenchen Shift n2 ϕ ϕ a k0n1 n1 k0n1sinθ コア θ -a k0n1cosθ n2 n1> n2 ϕ 自由空間中での波数: k0=2π/λ (λ: 波長)、媒質中では k0n1 光の伝搬方向の伝搬定数成分 β は、 β = k0n1cosθ 光が伝搬方向に伝わる速度は、 であり、vgを群速度(Group Velocity)という (c は光速度) 光の伝搬と垂直方向の伝搬定数成分 (k0n1sinθ)に対して、以下の式が成り立つ時、光伝搬と垂直方向に定在波ができる N: モード番号 (0, 1, 2 ‥‥)

8 導波モードと定在波 E N = 0 Δϕ = 0 E N = 1 2π E N = 2 4π

9 入射角度 光伝搬と垂直方向での定在波条件の式より、モード番号Nに対する入射角度θNは、
ここで、 Goos-Haenchen Shiftの値 ϕN は一般的には入射角度 θN の関数になるが、 θN が全反射角 θc よりも十分に小さい場合には、      と近似できる。 従って、モード番号 N に対する入射角度 θN は、 モード番号がある値よりも大きくなると、全反射条件が満たされなくなり、伝搬できなくなる。つまり、伝搬可能なモードは、以下の条件を満たす。 従って、導波路内を伝搬可能なモード番号の最大値 Nmaxが存在し、以下の条件を満たす。

10 モードの数 導波路内を伝搬可能なモード番号の最大値 Nmaxは以下の式で与えられる。
ここで V は、Vパラメータ或いは規格化周波数と呼ばれている Nmaxよりも大きなモード番号のモードは伝搬できないので、カットオフにあると言う 注) 式(1)は光線近似によるもので、厳密な波動方程式から導くと、 N = 0の基本モードに対してカットオフは存在しない 導波路の分散関係 β ω/c (k0) 1/n1 1/n2 N=0 N=1 N=2 N=3 カットオフ領域 (放射モード) 群速度 曲線の傾きはvg /cで 、群速度に対応 モードによって群速度の値は異なる 単一モード条件: V < π /2 n1=1 ライトラインよりも上の領域では、光の速度を超えることになるので、伝搬できない ライトライン

11 物質中でのMaxwell方程式の解 教科書p.189~190 構造関係式 オームの法則 式(1)の両辺の rotation をとる
式(2)を代入 式(7)を代入 式(5)を代入 ベクトル恒等式より 媒質中に真電荷が存在しなければ、式(3), 式(5)より、divE = 0 従って、 の関係式が導かれる 同様にして、式(2)の両辺の rotation をとってやると、磁場に関する関係式 も導ける

12 物質中でのMaxwell方程式の解 式(8), (9)を電信方程式と呼ぶ。
絶縁体媒質(誘電体なども)や真空中の時、σ = 0であるから、式(8), (9)は各々、 となり、電磁波の波動方程式が得られる。 一方、導体中(金属など)では、式(8), (9)において左辺第3項が無視できるようになる。 Eは、E(x, t) = E(x)e jωt のように表されるので、左辺第2項と第3項の大きさを比較すると、 通常の金属において、導電率 σ の値は、 誘電率 ε の値は、 マイクロ波帯においても ω の値は、 従って、σ >> εω の関係が成り立っており、 式(8), (9)において左辺第3項は第2項に対して無視できるくらい小さな値となる。

13 導体中の電磁場の式 従って、導体中において式(8), (9)は、以下の式に簡略化できる。
準定常電流、即ち交流回路では、変位電流の寄与を無視していることと、オームの法則が成り立つことを仮定している 式(8”)に式(7)の関係を代入してやると、 の関係も導ける。 式(8”), (9”), (10)は、拡散方程式と呼ばれている。 式(8”), (9”)は、Maxwell方程式において、変位電流の項を無視することによっても得られる。つまり、式(2)の右辺において、第1項の伝導電流に比べて第2項の変位電流の寄与が無視できる場合、式(2)は式(2’)となり、これを用いて解いてやっても求められる。 変位電流が伝導電流に対して無視できるのは、先の σ >> εω の条件が成り立つ場合であり、このときの伝導電流を準定常電流と呼んでいる。電気回路における交流回路は、この準定常電流の場合を扱っている。

14 導体中の電磁場と表皮効果 z 真空 金属導体 導体中での電場は、式(8”)で与えられ、その解として、 δ x の形の平面電磁波を仮定すると、
真空中から導体中への電磁波の入射 また、複素数の公式 を用いた ここで、δ は表皮の深さ(Skin depth)と言い、電磁波が金属導体中に侵入できる深さである。 このように、電磁場が金属導体の内部深くには侵入できない現象を、表皮効果(Skin effect)と呼ぶ 例えば銅の場合、導電率 σ = 5.8×107 S/m なので、表皮の深さ δ は、 1GHzで約 2.1 μm


Download ppt "電磁気学C Electromagnetics C 7/1講義分 光導波路と光共振器 山田 博仁."

Similar presentations


Ads by Google