Presentation is loading. Please wait.

Presentation is loading. Please wait.

超新星(超新星残骸)の 中間赤外線サイエンス

Similar presentations


Presentation on theme: "超新星(超新星残骸)の 中間赤外線サイエンス"— Presentation transcript:

1 超新星(超新星残骸)の 中間赤外線サイエンス
2014/11/14 超新星(超新星残骸)の 中間赤外線サイエンス 野沢 貴也(Takaya Nozawa) (National Astronomical Observatory of Japan) 1. Formation of dust in the expanding ejecta 2. Formation of dust in dense shells behind shocks 3. Infrared light echo by circumstellar dust 4. Emission from shock-heated circumstellar dust

2 0-1. Origins of IR emission from SNe
Dust formation in the ejecta Dust formation in dense shell IR light echo by CS dust Shock heating of CS dust

3 1-1. Dust mass formed in the ejecta of CCSNe
missing cold dust? young SNRs supernovae swept-up IS dust? Far-IR to sub-mm observations revealed that ~0.1 Msun of dust grains can be produced in the ejecta of SNe

4 1-1. Dust mass formed in the ejecta of CCSNe
missing cold dust? young SNRs Matsuura+2011 Balow+2010 Gomez+2012 supernovae swept-up IS dust? Far-IR to sub-mm observations revealed that ~0.1 Msun of dust grains can be produced in the ejecta of SNe

5 1-2. ALMA reveals dust formed in SN 1987A
SED of 25-years old SN 1987A Indebetouw+2014 ALMA spatially resolves the thermal emission from cool (~20K) dust of ~0.5 Msun formed in the ejecta of SN 1987A ➔ core-collapse SNe could be production factories of dust grains ## SN 1987A is the only target that can probe dust formation in ## SNe with ALMA

6 1-3. Issues on dust formation in CCSNe (1)
‐ なぜ中間赤外線と遠赤外線でダスト量が違うのか?     (光学的厚さの問題?ダスト温度の違い?ダスト形成時期の違い?) nucleation theory kinetic approach SED fitting t=1153d (2-8)x10^-3 Msun tform = 1-2 yr (Nozawa+2003) tform = 1-5 yr (Sarangi & Cherchneff 2013) tform > 5 yr (Wesson+2014)  例えば、中間赤外線ではまさに形成されたばかりの高温ダストを見ている?         (10^-4 Msun/day) x (1000 day) = 0.1 Msun??  ➜ 密度の高いクランプ中のダスト形成・輻射輸送計算    爆発後5年に渡るhigh cadence(1 per month)の中間赤外線観測

7 1-4. Issues on dust formation in CCSNe (2)
‐ 形成されるダスト量はわかったが、形成されるダストのサイズ・組成は?      (形成されたダストがリバースショックにどれだけ破壊されるかに重要) ・ ダストのサイズ  ➜ ダストの熱放射(赤外線)観測からは    制限できない  ➜ 可視の減光の波長依存性から推測     可視(近赤外線)スペクトル観測が     必要(➜ JWST?)  ## 超新星で形成されるダストは割と大きい  ## (a > 0.1 um)という流れになっている ・ ダストの組成  ➜ 形成されたダストの組成が特定できて    いるのは2-3例のみ     これまでの赤外線観測は、基本的に     測光による  ➜ 中間赤外線スペクトル観測が必要 MIMIZUKU imaging, 10^4sec, 5σ silicate carbon SN 2004et (d=5.6 Mpc, Kotak+09) Mdust ~ 10-4 Msun, Tdust ~ 650K

8 1-5. Issues on dust formation in CCSNe (3)
‐ ダストを形成する超新星の割合は?どんなタイプの超新星がダストを作る? ・ newly formed dust in the ejecta ➜ mainly Type II-P SNe SN 1987A (II-pec), SN 2003gd (II-P), SN 2004dj (II-P), SN 2004et (II-P), SN 2005ad (II-P), SN 2005af (II-P), SN 2006bc (II-L), SN 2006jc (Ib), SN 2007it (II-P), SN 2007od (II-P) ➜ 10 SNe + several candidates ・ why no evidence for dust formation in Type Ic and Ia SNe? ➜ observational bias? Type Ic: rare, Type Ia: distant ➜ too low ejecta density to produce dust grains   ➜ JWSTなどによりサンプル数は増加するはず(が劇的に増えない?)     観測される基本物理量は変わらない (λ < 30 µm)     ➜ ダスト形成過程の理解そのものには、大きな躍進はないかも?    統計的な議論は可能になるだろう

9 1-6. Dependence of grain radii on SN type
SN IIb SN II-P 0.01 μm - condensation time of dust days after explosion - total mass of dust formed ・ Msun in SN IIb ・ Msun in SN II-P - the radius of dust formed in H-stripped SNe is small ・ SN IIb without massive H-env ➔ adust < 0.01 μm ・ SN II-P with massive H-env ➔ adust > 0.01 μm Nozawa+10, ApJ, 713, 356

10 1-7. Summary of dust formation in SN ejecta
SNe are important sources of interstellar dust? ‐ALMA confirmed the presence of a large amount of newly formed dust in the ejecta of SN 1987A ➜ It seems too hard to detect thermal emission from cool dust in any SNe/SNRs other than SN 1987A with ALMA ‐What fraction of dust grains can survive against the destruction by the reverse shocks? ➜ We must know the composition and size of newly formed dust ‐When do massive dust grains form in the ejecta? ‐Does the dust formation process depend on the types of SNe? ➜ The number of dust-forming SNe will be increased by JWST We have to be ready for long-term/high-cadence MIR observations in case that SNe happen in the MW and LMC/SMC (or in nearby galaxies)

11 2-1. Dust formation in Type IIn SNe
・ newly formed dust in cool dense shell ➜ mainly Type IIn SNe SN 1998S (IIn), SN 2005ip (IIn), SN 2006jc (Ib), SN 2006jd (IIn), SN 2007rt (IIn), SN 2010jl (IIn) ➜ 6 SNe ・ why SNe IIn (~10% of all SNe) produce dust more efficiently? ➜ observational bias? Type IIn: relatively bright ➜ dust temperature high enough to be detected in NIR - Type IIn (massive CSM) - Early dust formation (< 250d) - NIR thermal dust emission - Blueshift of H and He lines Smith+2011

12 2-2. Evidence for dust formation in SN 2006jc
Tominaga+08 ・ brightening of IR ・ rapid decline of optical light ・ blueshift of emission lines formation of CO/SiO molecules (more robust if SiO are depleted) optical NIR ejecta case X-ray dust formation in cool dense shells (CDSs) explains extinction of zero-v component CDS case Smith+08

13 2-3. Dust formation in Type IIn SN 2010jl
carbon T = 1300 K silicate T = 1450 K at 550 day

14 2-4. Dust properties in Type IIn SN 2010jl
optical light curve Dust in SN 2010jl ・ carbon grains ・ dust mass: ~10-3 Msun ・ grain radius: <0.1μm (possibly <0.01 µm) Maeda, TN, et al. (2013)

15 2-5. Dust formation in Type IIn SN 2010jl
Power-law size distribution ・ α : ~3.5 ・ maximum radius : ~3-4 µm (>0.5 μm) Gall+2014, Nature

16 2-6. Caveats on Gall et al. (2014) paper
Dust formed in the ejecta Gall+2014, Nature Dust formed in cool dense shell Pre-existing circumstellar dust The mass of newly formed dust increases with time? We should not discuss the mass of newly formed grains by integrating the formation of dust in the ejecta and CDS

17 2-7. Summary of dust formation in CDSs
‐Dust formation in cool dense shells (CDSs) is expected to be another formation path of dust in SNe ➜ seems common for Type IIn SNe surrounded by dense gas ‐The wavelength-dependence of extinction of emission lines is a powerful tool to extract the size of dust for Type IIn SN 2010jl, aave < 0.1 μm (Maeda+2013) aave > 0.5 μm (Gall+2014) ‐We should distinguish between dust formation in the ejecta and in CDSs ➜ Properties of dust formed in the CDSs should not be adopted universally as the properties of dust formed in CCSNe Dust formation in CDSs provides hints on mass loss and late-phase evolution massive stars and on the origin of Type IIn SNe For SN 2010jl, mass-loss rate ~0.02 Msun/yr from dust mass of ~10^-3 Msun for dust-to-gas mass ratio (Maeda+2013)

18 3-1. Observing CS dust in aged dusty SNe
newly formed dust in ejecta shock-heated circumstellar dust shock-heated interstellar or newly formed dust Exploring the evolution of circumstellar dust by MIR observations of SNe yr after explosions

19 3-2. Strategy chart initial dust size distribution
pre-shock dust-to-gas ratio mid-IR spectra of SNRs shocked-heated dust mass Destruction rate of dust typical dust size dust temperature dust composition gas density (X ray obs.) mass-loss rate of the SN progenitor

20 3-3. MIR observations of SN 1987A
○ SN 1987A (Type II-pec) ‐ host galaxy: LMC (d = 50 kpc) ‐ shocked equatorial ring ‐ ring diameter : 2” (=0.5 kpc) on 1994 Feb (Burrow+95) IR-mm SED of 23-years old SN 1987A on 2009 Apr (Larsson+11) on 4 Oct 2003 Gemini T-ReCS (λ = μm) 2 pixels : 0.18” (Bouchet+04) Matsuura+11

21 3-4. Properties of CS dust around SN 1987A
- silicate - Tdust = 180 K - Mdust = Msun - LIR = erg/s (Seok+08, Dwek+08) IR light curve MIR SEDs ・ grain radius: a = μm ➔ relatively large Spitzer observation, Dwek+10 Chandra image Park+07 Dwek+08

22 3-5. MIR observations of SN 1978K with AKARI
○ SN 1978K (Type IIn) ‐host galaxy: NGC 1313 (d = 4.1 Mpc) ‐X-ray luminous ➔ massive CSM ‐IR luminous: LIR = 1.5x1039 erg/s AKARI images at 28 yr post explosion - silicate - Tdust = 230 K - Mdust ~10-3Msun Tanaka, TN, et al. (2012)

23 3-6. Expected targets of aged dusty SNe
nearby SNe, for which IR echo emissions were observed a few years after the explosions IR echo? ‐ SNe that have been done already SN 1987A (II-pec, 50 kpc) (Dwek+08, 10) SN 1978K (IIn, 4.1 Mpc) (Tanaka+12) SN 1980K (II-L, 5.6 Mpc) (Sugerman+12) SN 1995N (IIn, 24 Mpc) (van Dyk+12) ‐ nearby Type IIn SNe SN 1998S (IIn, 17 Mpc) (Pozzo+04) SN 2005ip (IIn, 30 Mpc) (Fox+11, 12) ‐ very nearby Type II-P SNe SN 1993J (IIb, 3.6 Mpc) SN 2002hh (II-P, 5.6 Mpc) (Barlow+05) SN 2004et (II-P, 5.6 Mpc) (Kotak+09) SN 2004dj (II-P, 3.5 Mpc) (Meikle+11) SN 2004et (Kotak+09) Tanaka, TN, et al. (2012)

24 3-7. MIR observations of aged dusty SNe
‐ 超新星爆発5-30年後の中間赤外(マルチエポック)観測   ➜ 衝撃波に掃かれた星周ダストの温度、質量、組成の時間進化   ➜ 星周ガスの密度 ➜ 質量放出史 (X線の観測があればより良い)   ## 大質量星の爆発前数百年間の質量放出史を、数年の観測でフォロー   ## 大質量星風中でのダスト形成環境の復元 ‐ ダスト破壊効率に決定打を与えるかも?      (銀河のダストの破壊のタイムスケールは、供給のタイムスケールよりも短い)    スパッタリングによるダスト半径の減少率 da/dt ~ 10^-6 (n / 1.0 cm-3) µm yr-1 (experimental data for bulk materials)   ➜ スパッタリングによるダスト破壊効率は過大評価されているかも? ‐ aged dusty SNeの候補天体はそれなりにある (+超新星の情報もある)   ➜ JWST・SPICAなどによりサンプル数は増加するはず   ➜ SN 1987Aは、ぜひ頻繁に(1 per 6 months) 観測するべき


Download ppt "超新星(超新星残骸)の 中間赤外線サイエンス"

Similar presentations


Ads by Google