Download presentation
Presentation is loading. Please wait.
Published byHarvey McCoy Modified 約 6 年前
1
K中間子原子核 -今そこにある課題- 現状のレビュー 簡単な模型を用いた ppK- の計算 まとめ 土手昭伸 (KEK)
K中間子原子核 -今そこにある課題- 土手昭伸 (KEK) 現状のレビュー 簡単な模型を用いた ppK- の計算 Simple Correlated Model Test on two nucleons system Result of ppK- まとめ
2
K中間子原子核 レビュー
3
岡さんからのメール… (1) ご自分のこれまでの仕事をレビューしながら、 (2) K-原子核では、どういう点が重要で、
…(略)… そこで、土手さんには、2日の午後にK-原子核のセッションで、 (1) ご自分のこれまでの仕事をレビューしながら、 (2) K-原子核では、どういう点が重要で、 (3) どこまでが、これまでに明らかになり、 (4) どの点が依然として未解決のままであるか、 (5) また、これらの未解決点を土手さんとしては、 どのように解決しようと思っているのか、 というような点に焦点をあててトークをしていただきたいのです。
4
... Deeply bound kaonic nuclei
(1) 自分のこれまでの仕事のレビュー Akaishi-san and Yamazaki-san’s study Phenomenological KN potential (AY KN potential) Strongly attractive. free KN scattering data 1s level shift of kaonic hydrogen atom binding energy and width of Λ(1405) = K- + proton Y. Akaishi and T. Yamazaki, PRC 52 (2002) Deeply bound; Binding energy of K- > 100 MeV Discrete state; Below Σπ threshold Very attractive I=0 KN interaction makes … ... Deeply bound kaonic nuclei My collaborators Akaishi-san and Yamazaki-san constructed a phenomenological KN potential. This Akaishi-Yamazaki KN potential can reproduce these experimental values. Low energy KN scattering dara, the energy shift of 1s state of kaonic hydrogen atom, and the binding energy and decay width of Lamda(1405) which is nowadays considered to be a bound state of proton and K- meson. Then constructed potential is very attractive, especially in I=0 channel. Then Akaishi-san solved a few Kbar nuclei by a simple model calculation with this KN potential. This is the result. 3HeK- and 4HeK- are deeply bound. In particular, 3HeK- is very deeply bound. Its binding energy is more than 100 MeV measured from 3He-K- threshold. And this state is clearly below Sigma-pi threshold. So it has narrow width. This 3HeK- is especially deeply bound due to I=0 KN interaction. Investigating Clebsch-Gordon coefficient of isospin, it is found that this 3HeK- contains large I=0 KN component. In a single KN pair in 3HeK-, the ratio of I=0 and I=1 components Is one to one. On the other hand, in case of 4HeK-, it is one to three. So I can say, a Kbar nucleus containing more I=0 KN component can be more deeply bound. Due to the very attractive I=0 KN interaction, K- meson can be deeply bound more than 100MeV And the discrete state is formed because Sigma-pi decay mode is closed. This is essential properties of deeply bound kaonic nuclei.
5
Antisymmetrized Molecular Dynamics
Collaboration with Akaishi-san and Yamazaki-san According to the study with Antisymmetrized Molecular Dynamics + G-matrix + Phenomenological KN interaction Total system is treated in a fully microscopic way. NN repulsive core is adequately smoothed out by following conventional nuclear physics. My collaborators Akaishi-san and Yamazaki-san constructed a phenomenological KN potential. This Akaishi-Yamazaki KN potential can reproduce these experimental values. Low energy KN scattering dara, the energy shift of 1s state of kaonic hydrogen atom, and the binding energy and decay width of Lamda(1405) which is nowadays considered to be a bound state of proton and K- meson. Then constructed potential is very attractive, especially in I=0 channel. Then Akaishi-san solved a few Kbar nuclei by a simple model calculation with this KN potential. This is the result. 3HeK- and 4HeK- are deeply bound. In particular, 3HeK- is very deeply bound. Its binding energy is more than 100 MeV measured from 3He-K- threshold. And this state is clearly below Sigma-pi threshold. So it has narrow width. This 3HeK- is especially deeply bound due to I=0 KN interaction. Investigating Clebsch-Gordon coefficient of isospin, it is found that this 3HeK- contains large I=0 KN component. In a single KN pair in 3HeK-, the ratio of I=0 and I=1 components Is one to one. On the other hand, in case of 4HeK-, it is one to three. So I can say, a Kbar nucleus containing more I=0 KN component can be more deeply bound. Due to the very attractive I=0 KN interaction, K- meson can be deeply bound more than 100MeV And the discrete state is formed because Sigma-pi decay mode is closed. This is essential properties of deeply bound kaonic nuclei. Strongly attractive, especially in I=0 channel Kaonic nuclei has interesting properties…
6
A. D., H. Horiuchi, Y. Akaishi and T. Yamazaki,
AMD + G-matrix + AY KN interaction studies revealed … Rrms = fm β = Central density = /fm^3 8Be Density (/fm^3) Rrms = fm β = Central density = /fm^3 8BeK- Density (/fm^3) 4.5 normal density Binding energy of K- = 104 MeV Nucleus-K- threshold Σπ threshold (simple AMD) Width (Σπ, Λπ) E(K) > 100 MeV for various light nuclei Drastic change of the structure of 8Be, isovector deformation in 8BeK- Highly dense state is formed in K nuclei. maximum density > 4ρ0 averaged density 2~4ρ0 Proton satellite in pppK- A. D., H. Horiuchi, Y. Akaishi and T. Yamazaki, PLB 590 (2004) 51; PRC 70 (2004)
7
Lots of interesting phenomena! Decay mode ☆ Strongly attractive
(2) K-原子核では、どういう点が重要 Dense system Lots of interesting phenomena! NN repulsive core Decay mode KN→πY KNN→YN ☆ Strongly attractive I=0 KN interaction
8
(3) どこまでが、これまでに明らかに KN interactionが非常に引力的なら、高密度の方向へ行きそう。
(3) どこまでが、これまでに明らかに KN interactionが非常に引力的なら、高密度の方向へ行きそう。 40Caのような大きな原子核でも、 非常にKaonが深く束縛する場合、最大密度は2ρ0に達する。 局所的に密度が高くなる。 RMF計算、NL-SHを使用 J. Mares, E. Friedman and A. Gal, Nucl. Phys. A770, 84 (2006)
9
(3) どこまでが、これまでに明らかに ppK- “Prototype of K cluster”の計算 ppK-の全束縛エネルギー
(3) どこまでが、これまでに明らかに ppK- “Prototype of K cluster”の計算 ppK-の全束縛エネルギー 50 ~ 70 MeV
10
(4) どの点が依然として未解決のままであるか
(4) どの点が依然として未解決のままであるか 高密度状態? KN相互作用が非常に引力的 Kaonの近くに核子が引き寄せられ、高密度状態が形成される可能性 平均二核子間距離が小さくなり、核子間斥力芯が重要に。 我々(土手・赤石・山崎)は Conventionalな核物理の方法=G-matrix法 に基づき、適切にNN斥力芯を処理し計算を行った。 その結果、高密度状態が得られた。 G-matrix法の適用限界を超えていたのでは? 斥力芯がなまされすぎた結果の高密度状態?
11
(4) どの点が依然として未解決のままであるか
(4) どの点が依然として未解決のままであるか Decay width? 深く束縛し、主崩壊チャネルであるΣπが閉じても、 KNN→YN (Non-mesonic decay, 二核子吸収) がある。 その効果は に比例。もし高密度状態だと… 少数系でもその効果は同様なのか? 参考 BK >100 MeVでは 全崩壊幅 Γ~50 MeV RMF計算、NL-SHを使用 (PbはL-HS) J. Mares, E. Friedman and A. Gal, Nucl. Phys. A770, 84 (2006)
12
Strongly attractive Strongly attractive Weakly attractive
(4) どの点が依然として未解決のままであるか “Effective” KN potential の作り方 Weise流 (現在、土手が使ってるもの): 自由空間での散乱振幅に基づく T行列 + … + + … … Strongly attractive 赤石さん流 (前に、土手が使ったもの): 原子核中であることを核子の方は考慮 G行列 + … + + … … Pauli blocking, 一粒子エネルギー Strongly attractive Oset流 (多分、土手が使わないもの): 中間状態のkaonの媒質効果も考慮 + … + + … … M. Lutz, Phys. Lett. B426, 12 (1998) Weakly attractive
13
Weakly attractive (4) どの点が依然として未解決のままであるか 核物質や大きい原子核なら、中間状態のkaonが …
(4) どの点が依然として未解決のままであるか “Effective” KN potential の作り方 僕ら(土手、Weise、多分赤石さんも)の疑問 核物質や大きい原子核なら、中間状態のkaonが 媒質効果を受けるのは正しいだろう。 しかし ppK- のような非常に少数系でも重要なの? 傍にいる一つのprotonが媒質の働きをするの? Oset流 (多分、土手が使わないもの): 中間状態のkaonの媒質効果も考慮 + … + + … … M. Lutz, Phys. Lett. B426, 12 (1998) Weakly attractive
14
Invariant mass of p and Λ
(4) どの点が依然として未解決のままであるか 様々な実験結果 Invariant mass of p and Λ H. Fujioka et FINUDA ppK- B.E. = 116 MeV Γ = 67 MeV ppnK- (T=0) B.E. = 169 MeV Γ < 25 MeV 4He (stopped K-, n) ppnK- M. Iwasaki et KEK 16O (in-flight K-, n) 15OK- T.Kishimoto et BNL 15OK- B(K) = 90 MeV Heavy ion collision N. Herrmann et GSI ppnK- B.E. = 150 MeV Γ ~ 100MeV
15
Invariant mass of p and Λ
(4) どの点が依然として未解決のままであるか 様々な実験結果 Invariant mass of p and Λ H. Fujioka et FINUDA ppK- B.E. = 116 MeV Γ = 67 MeV ppnK- (T=0) B.E. = 169 MeV Γ < 25 MeV 4He (stopped K-, n) ppnK- M. Iwasaki et KEK 追試で確認されず。 批判 Final state interaction? K-pN→ΛNによるΛ若しくはNが 娘核と相互作用して作られた。 V. K. Magas, E. Oset, A. Ramos and H. Toki, PRC74, (2006) 6Li targetでは6Li中のdeuteron clusterに K-が吸収された結果。 M. Agnello et. al., NPA775, 35 (2006) 16O (in-flight K-, n) 15OK- T.Kishimoto et BNL 15OK- B(K) = 90 MeV Heavy ion collision N. Herrmann et GSI ppnK- B.E. = 150 MeV Γ ~ 100MeV Very preliminary
16
ppK- (5) これらの未解決点をどのように解決? 高密度状態? G-matrixを経由せず、斥力芯を直接扱う。
(5) これらの未解決点をどのように解決? 高密度状態? G-matrixを経由せず、斥力芯を直接扱う。 少数系なら厳密計算、AMDでやるならUnitary correlatorの使用か? T. Neff and H. Feldmeier, Nucl. Phys. A713, 311 (2003) 二核子吸収について 少数系は密度分布は一様でなく、構造を持つことが多い。 系がコンパクトであっても大きくならない可能性はないか? ppK- 3fm Nucleon Kaon
17
(5) これらの未解決点をどのように解決? 反応の観点からの研究 KN potentialの作り方 “少数系のK中間子原子核でも、
(5) これらの未解決点をどのように解決? KN potentialの作り方 “少数系のK中間子原子核でも、 中間状態のkaonの変化を考慮しなければならないのか?” 実験で深く束縛した少数系のK中間子原子核が見つかればいいのだが… (すみません、答えになってません。) 反応の観点からの研究 スペクトルの計算 … 比連崎さん、山縣さん(奈良女) 小池さん(理研)
18
(6) 重要なこと クォークレベルからのΛ(1405)の研究 竹内さん(日本社会事業大)、根村さん(理研) Λ(1405)がダブルポール
(6) 重要なこと クォークレベルからのΛ(1405)の研究 竹内さん(日本社会事業大)、根村さん(理研) Λ(1405)がダブルポール 慈道さん(基研) 違った描像でのK中間子原子核の研究 Λ*原子核 … 岡さん、安井さん(東工大) スキルム模型による ppK- の研究 … 西川さん(東工大)、近藤さん(国学院) Kaonic 3,4Helium atom 2pレベルのシフト 早野さん(東大)、竜野さん(東大)、板橋さん(理研)
19
簡単な模型を用いたppK-の計算 Collaborating with W. Weise (TU Munich) 赤石さん、ありがとう。
20
1. Simple Correlated Model
Model wave function of ppK- Normalization factor Spin w. f. (NN) Spatial part Isospin w. f. Detail of the spatial part NN correlation function
21
1. Simple Correlated Model
In this model, I assume only one configuration; total nucleon’s spin S=0 and total nucleon isospin TN=1. Other configurations are ignored. Therefore, this model is very simple. Single particle motion of nucleons and kaon is described with a single Gaussian, G(ri) and G’(rK), respectively. Two nucleons’ wave functions are assumed to be the same G(ri). The NN correlation is described with 1 minus superposition of several Gaussians. We don’t introduce a correlation between a nucleon and a kaon.
22
1. Simple Correlated Model
Few remarks This model corresponds to the AMD case where all wave packets come together to the origin. But the NN correlation is respected. The angular momentum is very restricted. The orbital angular momentum of each particle measured from the center is zero and the relative one between any two particles are also zero. If we choose the variational parameters μ and γ independently, it is impossible to separate the wave function of the center-of-mass motion from the total wave function. The relation should be held to separate the CM motion completely.
23
1. Simple Correlated Model
Energy variation This model wave function has the real variational parameters, which are included in the spatial part wave function. These real parameters are determined by the Simplex method to minimize the total energy of the system. This time, The width parameters of the Gaussians in the NN correlation are fixed to those of Kamimura Gauss.
24
2. Test on 2N system First, I checked the reliability of this model in case of pp system. The model wave function is as follows. Variational parameters are determined by the Simplex method. are fixed to those of Kamimura Gauss.
25
2. Test on 2N system NN potential to test
I’d like to know whether this model works correctly under a potential such as Av18-like which has a strong repulsive core or not. But the Av18-like potential used in calculating ppK- does not make two protons bound. So, I enhanced the long-range attraction of this potential slightly so that two protons are bound. The test potential is shown as the pink line (Dote_HC2) in the left panel. As can be seen, the repulsive-core part of this potential is almost the same as that of the Av18-like potential shown as the blue line.
26
2. Test on 2N system Solve in two ways
I solve the same Hamiltonian by two methods. Test potential (Dote_HC2) One way is the SCM model that will be applied to the calculation of ppK-. The other way is the Gaussian diagonalizing method. (GDM) The relative wave function is expanded by so-called Kamimura Gaussians. We solve the Schroedinger equation by the diagonalization with the Gaussian base
27
2. Test on 2N system Result As for the GDM, I have confirmed that the solution is sufficiently converged up to the base number 25. This GDM solution can be regarded as the exact solution of this Schrodinger equation. The SCM method almost achieved to the exact solution when the base number is 9.
28
2. Test on 2N system Relative wave function GDM N=25 SCM N=9 Test
potential [MeV] SCM N=9 [fm]
29
3. Result of ppK- Hamiltonian This time, Coulomb force is neglected.
30
: KN scattering amplitude
KN potential S-wave potential P-wave potential 1, Gaussian shape as=ap=a 2, Energy dependent Chiral SU(3) theory : KN scattering amplitude : KN scattering volume 3, P-wave potential including derivative operator.
31
KN potential Finite range (normalized Gaussian)
The relation between T matrix and scattering amplitude Self energy at the low-density limit Klein-Gordon eq. The optical potential from the self energy Optical potential Finite range (normalized Gaussian) Two-body interaction
32
KN potential S-wave scattering amplitude
33
KN potential P-wave scattering volume
34
Procedure of the present calculation
Self-consistency of kaon’s energy is taken into account. Assume the values of the binding energy of kaon itself “B(K)”. The Hamiltonian is determined. If No Perform the energy variation by the Simplex method. Then, calculate the binding energy of kaon with the obtained wave function. Check Finished ! If Yes
35
Procedure of the present calculation
Remarks The imaginary parts are ignored in the current study. The kaon’s binding energy “B(K)” B(K) = -EK = -(Etotal – Enucl) [pp] in ppK- + K Enucl p+p+K B(K) Etotal [ppK-]
36
3. Result of ppK- There doesn’t exist any self-consistent solution
for the range parameter a < 0.67 fm. This result is the same as that obtained in the previous AMD study reported in YKIS’06 and so on. Kamimura Gauss, N=10, r1=0.1 fm, rN=9.0 fm P-wave int. : non-perturbative a; range parameter [fm] Self consistency a=0.67 fm a=0.70 fm a=1.00 fm a=0.80 fm a=0.90 fm
37
3. Result of ppK- The total binding energy of ppK- is 42 – 76 MeV.
Property [fm] [MeV] The total binding energy of ppK- is 42 – 76 MeV. cf) It doesn’t exceed 53 MeV in the previous AMD study. [MeV] [MeV] [fm]
38
3. Result of ppK- Property [fm] [MeV] The relative distance between two nucleons is larger than 1.0 fm. If the size of a nucleon core is 0.5 fm, they don’t touch. This result is the same as that of the previous AMD study. [MeV] [MeV] [fm]
39
まとめ
40
簡単な模型によるppK-の計算 NN相互作用として、強い斥力芯のあるもの(Av18-like)を用い、ppK-を調べた。
KN相互作用はカイラル理論に基づくものを使用。 s-wave型だけでなくp-wave型も含んでいる。 模型波動関数は非常に簡単なものにした。 核子系はL=S=0、T=1の成分のみ。 但し、二核子間には相関関数を導入し斥力芯を適切に避けられるようにした。 前回のAMDでの計算との違い 角運動量、アイソスピンに関してVariation After Projectionになっている。 p-wave KNポテンシャルを非摂動的に取り扱った。 結果 全束縛エネルギー 42 ~ 76 MeV (a=1.00 ~0.67fm…前回同様レンジに下限が生じる) 二核子間平均距離は1 fmを下回らない。 基本的には前回のAMDの結果と似ている。
41
現状のまとめ KN相互作用が非常に強い引力であれば、密度は高くなれそう。
ppK-はいくつかのグループが計算したところ、全束縛エネルギーは50~70MeV。 KN相互作用の取り扱いを始め、まだ分かってないことが多いように思える。 (自分だけかもしれないが…) 高密度状態になるかどうかは、少数系であればG行列を経由せずに 直接計算することではっきりするであろう。 実験結果は続々と出てきているが、まだ誰もが認めるような結果は 無いように思える。更なる実験が期待される。 また、理論サイドも実験に直接貢献できるような研究が必要なのでは。
Similar presentations
© 2024 slidesplayer.net Inc.
All rights reserved.