Download presentation
Presentation is loading. Please wait.
1
天文学用MEMS可変形鏡の開発 大屋 真 (国立天文台ハワイ観測所)
2
アウトライン 補償光学装置(AO)と形状可変形鏡(DM) AO用MEMS-DM 次世代MEMS-DM開発に向けて
3
補償光学装置と形状可変形鏡
4
補償光学装置とは 天文学と眼科医療で応用が盛ん 光波面の歪みをリアルタイムで 補正して回折限界像を取得 w/o AO w/ AO
網膜 海王星 w/o AO w/ AO w/o AO w/ AO
5
形状可変鏡 (Deformable Mirror; DM)
ピエゾ (最もよく使われている) 磁歪 電磁石 天文用では一般的ではないが、次の様な方式もある 透過型: 液晶位相板 透過率や偏光特性が問題 熱変形 特に赤外波長では背景雑音になる 液体 安定性?
6
ピエゾDMの代表例 積層アクチュエータ バイモルフ
7
AO用MEMS-DM
8
なぜMEMS-DM? ピエゾ MEMS 緑色:MEMS-DMに期待される項目 赤色:MEMS-DMに対する課題 大きさ 大きい
ピエゾ MEMS 大きさ 大きい 素子間隔: > 5 mm (64x64素子: >300mm□) 小さい 素子間隔: <1 mm (64x64素子: < 60mm□) 重さ 重い (特に積層アクチュエータ) 50kg 軽い (CPUチップ程度) <100g 価格 $1,000 / actuator $100 / actuator ヒステリシス > 5% < 0.1% ストローク (変形量) > 10 mm < 10 mm 緑色:MEMS-DMに期待される項目 赤色:MEMS-DMに対する課題
9
既存のMEMS-DM 基本原理は、静電力で「引き」、機械的バネ(張力)で「戻り」 単一メンブレン式 二段メンブレン式 分割三脚式 OKO
Boston Micromachines Iris AO
10
各方式の比較 単一メンブレン式 二段メンブレン式 分割三脚式 注意:AO用では各素子の高さ方向の変位が重要。
仕組みが簡単 現在、最も注目されている あまりやられていない 素子数<100 素子数<4096 素子数>100 中心ストロークは>10um エッジでは小さい。 ストローク不十分 (多分10umは行かない) ストロークが大きい (既に10umに到達) 面が不安定。 多素子には不向き? 湿度に弱い。 分割による鏡面としての 性能の劣化? 振動に弱い? 注意:AO用では各素子の高さ方向の変位が重要。 DLP用DMDの様に各素子の傾きが変わるだけでは不十分
11
次世代MEMS-DMの開発に向けて
12
背景 口径30mの超大型望遠鏡を建設予定 多様化 TMT: Thirty Meter Telescope 素子数、ストロークを増やす必要あり
現在の世界の主力は口径10m級(すばる望遠鏡は8m) 素子数、ストロークを増やす必要あり 観測時間が貴重⇒多天体化⇒安価・簡素 多様化 観測目的ごとに異なったAO方式が必要 各AO方式ごとに違う要素技術(DM)が必要
13
TMT-AOに必要な仕様 素子数: N ∝ (D/r0)2 波面誤差: σ ∝ (D/r0)5/6
Subaru AO188と同等の性能が必要なら 188×(30/8)2~2600 1000素子以上は必須 波面誤差: σ ∝ (D/r0)5/6 3σで評価(±3σ、鏡で半分)、TT補正済 天頂 Subaru: 2.2[μm]、TMT: 6.5[μm] EL=30°Subaru: 5.5[μm]、TMT: 16.4[μm] 秋山さんのシミュレーションによる見積もりは 13
14
AO方式の多様化 レンズ … … 顕微鏡 広視野カメラ ExAO (Extreme AO) MOAO (Multi-Object AO)
明るい星近傍の惑星 暗い遠方銀河を複数同時 究極の波面補償性能による高コントラストイメージ - 超多素子 - 高速動作 - 高い鏡面精度 トモグラフィック3D波面推定と オープンループ制御 繰り返し精度 鏡面の安定性 高反射率 多ユニット 簡素・安価 これまでのMEMS-DMは、 主にExAO用に作られてきた。MOAO用では仕様が異なる。 14
15
既存のMEMS-DM、すばる望遠鏡のDMの仕様を基にTMT-MOAO用にアレンジ
Element count 1024 = 32x32 (goal: 4096 = 64x64) Pitch 300 ~ 1,000 mm Aperture size 10~ 30mm (goal: 20~ 60mm) Fill factor 98% Actuator yield > 99% Stroke (overall) 20 mm Stroke (at highest spatial freq.) 4 mm Surface roughness (RMS) < 20nm (goal: <10nm) Flatness (controlled; RMS) < 20 nm Bandwidth > 100Hz First resonance > 1kHz Hysteresys < 0.1% Reflective surface Gold (Silver) w/ overcoat Uniformity of surface reflectivity ±1% RMS Stability < 4nm Repeatability Resolution Maximum drive voltage < 300V Operating temperature -5℃ ~ +15℃ (goal: -30℃ ~ +30℃) Relative Humidity 0 ~ 90 % Altitude 0 ~ 4500 m
16
開発の着眼点 既存のMEMS-DMで不足な点・問題点 MEMSの専門家から見た新方式のアイデアはないか? ストローク 耐久性 制御回路 価格
17
大気ゆらぎの空間周波数ごとの強度 Zernike polynomials 4.4 (別途補正) 1 0.51 0.33 0.23
各動径次数の各形状の 波面誤差(RMS)の比 Zernike polynomials 干渉計でなければ 補正しない。 4.4 (別途補正) 1 0.51 0.33 0.23 この先はなかなか 減らない… N^-0.43 (R^-0.87) 大きな波面誤差を持っているのは低空間周波数成分
18
Woofer-tweeter ストローク不足の場合は、スピーカーの様に Woofer: 低空間周波数を低速で補正
OAE 1 Woofer DM OAE 2 Tweeter DM 2700 300 f/35 output f/15 input 光学系が複雑になり、透過効率も落ちる。 ある程度空間周波数が大きくなるとwooferの効果が薄い。
19
ストロークの目標 特にエッジを大きく Woofer-tweeterを一枚で エッジで大ストロークなら、小素子数やTT鏡でも意味あり。
素人発想としては、「三脚式の二段メンブレンができないか?」 金メダル 20 mm 世界初 (単一メンブレン式以外では) Wooferを無くせる。 銀メダル 10 mm 分割式では実現しているが、 連続面式であれば世界初 Wooferの仕様を緩くできる。 銅メダル 5 mm BMCのMEMS-DMと同じ。 他の点を改良できれば十分意味あり。
20
耐久性 耐環境性 メンテナンスフリー 安定した運用のために重要。チャンピオンデータだけではダメ。 特に耐湿度。観測装置は半屋外。
例: Boston Micromachinesのkilo-DM 高電圧(150V)を掛けると電線が腐食するらしい。 ウィンドを付けるか、湿度< 50%以下で使用 メンテナンスフリー 光学アラインメントがあるので交換は容易ではない。 10年は無故障であって欲しい。
21
制御回路 低電圧駆動 誤電圧印加防止回路 リニアな制御電圧特性 外部配線数の削減 3U
静電式は変位∝電圧の2乗で非線形(D/Aの分解能が変化) 電圧-変位特性に合わせた高電圧アンプが用意できないか? 外部配線数の削減 チャンネル数分の外付け高電圧アンプ、高耐圧・高密度電線 専用回路で外部配線数を減らす工夫 (例えばCMOSイメージセンサ) 排熱との関係もあるので単純ではないが…。 3U
22
価格 例: Boston Micromachinesのkilo-DM 希望としてはフルスペックで
DM chip: $75k Driver: $75k 4000素子のDMでは総額$500k程度 希望としてはフルスペックで DM chip + Driver: < $100k (1千万円)
23
天文用観測装置用としての注意点 機械的性能 光学的性能 時間安定性 (ふらふらしては困る) 繰り返し精度 (オープンループ制御で重要)
大きさの自由度 (目的に応じた選択が望ましい) 大きくなると動作速度が遅くなる? 必要電流増える? 光学的性能 フラットなバイアス形状(単一メンブレンだと曲面) 面精度(研磨・コーティング) 特に誘電体多層膜コーティングは、張力の問題で難しい?
24
まとめ 補償光学装置(AO)と形状可変形鏡(DM) AOとMEMS-DM 次世代MEMS-DM開発に向けた仕様案 Action Item
仕様案のブラッシュアップ 既製品でできている部分は、実際に可能か「確認」 既製品で不足な部分は、新しいアイデアがないか「検討」 項目に抜けが無いか?
25
補足資料
26
既存品の仕様例: 二段メンブレン式 Boston Micromachines: Kilo-DM Element count
1032 (32x32) Pitch 300 mm Aperture size 9.3 mm Fill factor 99% Actuator yield > 99.% (8/4096) Stroke (overall) 1.5 mm surf. Stroke (at highest spatial freq.) > 0.2 mm surf. Surface roughness (RMS) 20 nm surf. Flatness (controlled; RMS) 0.28 nm surf. Reflective surface Gold-coated cont. face sheet w/ protect window Stability < 0.35 nm surf . (0.08 nm med.) Repeatability < 1 nm surf. (0.046 nm med.) Resolution sub-nm (14bit) Response (10-90% slew) 20 ms Maximum drive voltage 160V Operating temperature -30℃ ~ +30℃
27
既存品の仕様例: 分割三脚式 Iris AO: S163-8 Element count 163 (max. 367 demo) Pitch
700 mm Aperture size 7.7 mm Fill factor 98 % Actuator yield Stroke (overall) 8 mm (12 mm for 37act.) Stroke (at highest spatial freq.) 8 mm Tilt of each segment 8 mrad Surface roughness (RMS) < 30 nm Flatness (controlled; RMS) < 20 nm Reflective surface Gold / protected Aluminum; dielectric coating OK Stability Repeatability Resolution 12 bit Response (20-80% slew) 150 ms Bandwidth (1dB) > 2k Hz Maximum drive voltage 200V Operating temperature 5℃ ~ +70℃ (-40℃ ~ +85℃ by request)
28
ExAOの仕様例: 二段メンブレン式 Boston Micromachines: Gemini Planet Imager (ExAO)のtweeter Element count 4096 (64x64) Pitch 300 ~ 400 mm Stroke (overall) 2.4 mm (4.0 mm) Stroke (at highest spatial freq.) 1.0 mm Differential stroke > 1.0 mm Fill factor 99% Aperture size 19.2 ~ 25.6mm Surface roughness (RMS) <10nm (goal: <3nm) Surface roughness (PV) <30nm (goal: <9nm) Flatness (controlled; RMS) < 1nm Bandwidth (1dB) > 250Hz First resonance > 2,500Hz Actuator yield > 99.8% (8/4096) Clear aperture 48act. across; 2act. away from edge Reflective surface Gold-coated continuous face sheet Uniformity of surface reflectivity ±1% RMS Maximum drive voltage 300V Operating temperature -30℃ ~ +30℃
Similar presentations
© 2024 slidesplayer.net Inc.
All rights reserved.