Presentation is loading. Please wait.

Presentation is loading. Please wait.

通信工学概論 Fundamentals of Electrical Communication コミュニケーション工学B Communication Systems Engineering B 2017年 1/20, 1/27, 2/3講義資料 光ファイバー通信入門 於 101大講義室 山田 博仁.

Similar presentations


Presentation on theme: "通信工学概論 Fundamentals of Electrical Communication コミュニケーション工学B Communication Systems Engineering B 2017年 1/20, 1/27, 2/3講義資料 光ファイバー通信入門 於 101大講義室 山田 博仁."— Presentation transcript:

1 通信工学概論 Fundamentals of Electrical Communication コミュニケーション工学B Communication Systems Engineering B
2017年 1/20, 1/27, 2/3講義資料 光ファイバー通信入門 於 101大講義室 山田 博仁 講義資料のダウンロード  

2 講義内容 1. 講義の目的: 光ファイバー通信のしくみを理解する 2. 講義内容 1回目
 1回目   ・ インターネットを支える光ネットワークと、適用範囲が広がりつつある光通信   ・ 光通信とは?、光通信の歴史、光通信の特長、光通信の要素デバイス   ・ レーザーとコヒーレント光、何故コヒーレント光が望ましいのか?  2回目   ・ 光ファイバーにおける光伝搬、導波モード、分散、伝送帯域   ・ 光ファイバー伝送における信号波形歪の発生と補償技術   ・ 光変調方式、光伝送方式、デジタルコヒーレント光伝送システム  3回目   ・ 光通信における信号多重化方式   ・ 光ネットワークとフォトニックネットワーク   ・ 光通信の将来展望 3. 成績評価   毎回の講義に関するレポート点の合計 (20点満点) 4. 参考書   伊藤弘昌 編著、フォトニクス基礎、朝倉書店   末松安晴、伊賀健一共著、光ファイバ通信入門、オーム社 5. 質問等 

3 本日(1/20)のレポート問題 以下について述べよ。
スマートフォンなどの携帯情報端末の普及により、今国内のネットワークにどんな問題が起きているのか?定量的に述べよ。 電気通信と光(ファイバー)通信との構成上の違いについて述べよ。また、近年光通信の役割はどのように変化してきたか? 光ファイバー通信用の光源としては、発光ダイオード(LED)よりもレーザーを用いる方が望ましい。それは何故か?

4 出展 http://www1.alcatel-lucent.com/submarine/refs/index.htm
海底光ケーブル網 出展 

5 当たり前になった光ファイバー通信 AV機器のデジタル入出力ケーブル
FTTH(Fiber To The Home): フレッツ光(NTT), auひかり(KDDI)などがサービスを 出展: 光回線終端装置(左) とルーター(右) AV機器のデジタル入出力ケーブル AV機器のデジタル入出力ケーブルとコネクタ

6 身近になった光ファイバー通信 マンションなどの集合住宅では、共有部分まで光ファイバーを敷設し、ONUで光から電気信号に変換した後、その先の各住戸までは電話回線を利用するVDSL方式が用いられている NTT東日本 フレッツ光HPより 集合住宅などのVDSL(Very high speed Digital Subscriber Line)方式

7 国内におけるブロードバンド契約者数の推移
2015年末の固定系ブロードバンド・インターネット回線の契約数は3,781万契約 そのうちFTTH(光回線加入者)は2,787万契約で、全体の約74% FWA(Fixed Wireless Access): 固定無線アクセスまたは加入者系無線アクセスシステム BWA(Broadband Wireless Access): 広帯域移動無線アクセスシステム、WiMAXなど 3.9G(第3.9世代移動通信システム): LTE、UMBなど ※) VDSLはFTTHの分類に含まれる 出典: H28年度版情報通信白書

8 国内のネットワーク トラフィックの推移 国内のインターネット トラフィックの総量は、2015年11月時点で 5.5Tbps
現在もなお、年率約40%で増加 出典: H28年度版情報通信白書

9 ネットワーク機器の電力消費の予測 国内のインターネット トラフィックは年率40%で増加
ネットワーク機器の消費電力もそれに伴い増加すると仮定すると、2020年頃には、2007年の年間総発電量を超える見通し

10 1本の光ファイバーの信号伝送容量は? Question:
How much information can be transmitted by a thin piece of optical fiber ? A. 100G bps (1G = 109) B. 10T bps (1T = 1012) C. 1P bps (1P = 1015) D. 1E bps (1E = 1018) 通信用光ファイバー Hint: - FTTH (NTT FLETS・光 Premium, KDDI au光): 1G bps - Apple Next Gen. Thunderbolt: 20G bps

11 適用範囲が広がりつつある光通信 光通信は今や、サーバーの筺体間データ通信から、パソコンにまで
Active Optical Cable(AOC)によるStorage Area Network(SAN) Light Peakによる Universal Bus Interface AOCとサーバーのBackplane SONY VAIO Zに搭載されたLight Peak

12 ボード間光伝送用パラレル光モジュール スーパーコンピューターのボード間データ通信にも光通信が IBM Power775 スパコンに搭載
10Gbps, 12ch(120Gbps) パラレル光モジュール Avago製 MicroPODTM リボン光ファイバー Power775のシステムボード

13 車載光ネットワーク

14 LSIチップ内光配線 LSIの性能限界が近年顕在化 マルチコア化の流れ 電気配線の限界 光配線のメリット ・ クロック周波数高速化の限界
 - バッファ導入による回路複雑化、               消費電力増大  - クロック高速化によるノイズ問題顕在化 ・ コア間、プロセッサ-メモリ間データ伝送  の高速化限界、多層配線の限界 電気配線の限界 グローバル電気配線層 ローカル配線層 Tr層 光配線のメリット ・ 高速データ通信 ・ 消費電力の低減 ・ 電磁ノイズの低減 光配線層 LSIチップの断面 (出展: 米Intel社) 130nm 6層銅配線

15 適用分野が広がりつつある光通信 筐体(ラック)間 → ボード間 → チップ間 → チップ内(素子間)
筐体(ラック)間 → ボード間 → チップ間 → チップ内(素子間) Active optical cable (AOC) 100mまで Infiniband DDR(20Gbps)AWG24 20mまで Light Peak MicroPOD 光インターポーザ 出典: C. Gunn, “CMOS Photonics™ Technology Enabling Optical Interconnects” Luxtera, Inc.

16 通信とは 情報を送り手から受け手に伝えること 情報の送り手 情報の受け手 Alice Bob 情報の搬送媒体 便箋、はがき 電流、電波
手紙を書く 手紙を読む 情報を搬送媒体に載せる 搬送媒体から情報を取り出す 搬送媒体を送る 郵便システム 電話 搬送媒体 送る手段 マイクロフォン イヤフォン、スピーカ

17 各種波動を用いる通信方式 情報搬送媒体 (carrier) 導波機構の有無 通信方式 用途 音波 伝声管 船内、潜水艦内通信 機械振動
糸電話 教材 有線 電流(電磁波) 電気通信 電話、インターフォン 光(電磁波) 光ファイバー通信 (導波機構有) デジタルAV機器 FTTH 海底光ケーブル 音波 会話 携帯電話 航空・船舶無線 電波(電磁波) 無線通信 アマチュア無線 衛星通信 無線 狼煙 腕木通信 手旗信号 光(電磁波) 光通信 衛星間光通信 (導波機構無、 自由空間伝搬) 重力波 重力波通信 腕木通信塔

18 自由空間伝搬による光通信 ビル間光通信 衛星間光通信 実験衛星「きらり」による衛星間光通信実験に成功 (H18年3月)
大学キャンパス内 レーザ光通信システム (Canon) 衛星間光通信 NICT 小金井本部の光地上局 実験衛星「きらり」による衛星間光通信実験に成功 (H18年3月)

19 衛星間光通信 ガウスビーム波 r 強度分布 w0: ビームウエストサイズ ガウスビーム波の広がり角 2w0 2Δθ λ: 光の波長
Ex.) 波長1μmのレーザー光を、直径1mのビームにして月に送った    場合、月面でのビーム径はどのくらいになるか?    ただし、月までの距離は約38万kmである 答 直径約 240m

20 電気通信のしくみ 搬送波: 情報搬送の担い手 電気信号 搬送波を作る 搬送波に情報を載せる 搬送波から情報を取り出す 伝送路 発振器 変調
復調 電線 同軸ケーブル 情報の受け手 情報の送り手

21 光ファイバー通信の構成 xxxx 電気信号 光デバイス 光信号 xxxx 電子デバイス /回路 伝送路 LN変調器 EA変調器
フォトダイオード(PD) APD 搬送波は光 光源 光変調 光検出器 復調 電子回路 光ファイバー レーザー LED、電球 情報の送り手 情報の受け手

22 電磁波の波長 光ファイバー通信には、波長 1μm前後の近赤外域を使用 可視光域

23 光ファイバー通信の特長 1.広帯域 (高速、大容量通信が可能)
   1本の石英光ファイバーで、1Pbps(Pbpsは1015bit/secのこと)以上の    高速伝送が可能。近年、1.01Pbpsの光伝送に成功 (NTT, Fujikura,    北大, デンマーク工科大の共同)    参考) 同軸ケーブルの帯域:最大でも10GHz程度 2.長距離伝送が可能    中継間隔     同軸ケーブル:数km ~ 10km     光ファイバー:2,000km以上の無中継伝送も可能 3.漏話が少ない、電磁誘導の影響を受けない    光ファイバーは非導電性であるため、外部からの電磁誘導ノイズ    の影響を受けない。また、光ファイバー自体からの電磁波の放射も    無いので、近接光ファイバー間の信号干渉が少ない。 4.多重化が容易    光ファイバーが細く軽量のため、多芯化、長尺化が可能

24 光ファイバー通信の歴史 年 代 人または機関 事 項 1930年代 Lamb(独)、関(日本) 石英ファイバー(ロッド)による光伝送
年 代 人または機関 事  項 1930年代 Lamb(独)、関(日本) 石英ファイバー(ロッド)による光伝送 Townes(米), Schawlow (米), Basov(ソ)ら 1955年 光メーザーの着想 1957年 渡辺, 西澤(東北大) 半導体による超短波増幅・発振のアイデア 1960年 Maiman(米), Javan(米) ルビーレーザ, He-Neの発振 1962年 IBM, GE, MIT(米) 半導体レーザの発振 1966年 Kao, Hockham(英) 低損失シリカ光ファイバーの可能性示唆 1968年 川上,西澤(東北大) Graded-index型光ファイバーの発明 1970年 林, Panishら(米) AlGaAs半導体レーザ室温連続発振 NEC, 電電公社, 日立, 三菱(日), Bell研(米), STL(英) 1970年代 半導体レーザの長寿命化、発振安定化 1976~79年 電電公社, 藤倉電線(日) シリカ光ファイバー伝送損失が0.2dB/kmに 1980年代 NEC, 富士通, 日立, 東工大他 通信用半導体レーザの開発と高性能化 1990年代 Southampton大(英), NTT(日) 光ファイバー増幅器の発明と実用化

25 光ファイバー通信の要素デバイス デバイス 役 割 イメージ 光ファイバー 光信号を導く伝送路
役 割 イメージ 光ファイバー 光信号を導く伝送路 搬送波としてのコヒーレントな光を発生させる。さらに、搬送波に情報を載せるための光変調も可能 半導体レーザー 搬送波に載っている情報を電気信号として取り出す 光検出器(PD, APD) 伝送中に減衰などで弱くなった光信号を光のまま増幅する 光増幅器 光合分波器 光スイッチなど 光信号を分配したり、光の経路を切り換えたりするもの

26 光ファイバー 通信用シリカ光ファイバー 伝搬損失 < 0.2dB/km @ λ=1.55 μm 光ファイバーの伝送損失
光ファイバー低損失化の歴史 住友電工

27 光ファイバーの構造 ナイロン繊維で被覆 1本 石英ガラス or プラスチック シリコン樹脂で被覆 コア クラッド 光ファイバー素線
光ファイバー芯線 3000心光ケーブル コア クラッド n2 n1 >n2 n1 光ファイバー 屈折率分布

28 レーザーとコヒーレント光 光搬送波になるべく多くの情報を乗せるためには、コヒーレントな光が望ましい
コヒーレントとは、波の位相が揃った状態。高スペクトル純度、良好な収束性を有する 時間的コヒーレンス 空間的コヒーレンス インコヒーレント光 (コヒーレントでない) t 光の電界 f 又は λ 光の強度 コヒーレント光 t 光の電界 f 又は λ 光の強度 自然界に存在する光は全てインコヒーレント光  例: 太陽光、炎から出る光、蛍の光、白熱電球、蛍光灯、LED コヒーレントな光を人工的に発生させる装置がレーザー

29 何故コヒーレント光が望ましいのか インコヒーレントな電磁波を用いた初期の通信 電磁ノイズによる通信
1887年ヘルツは誘導コイルによる火花放電式電磁波発生器を発明 1896年マルコーニ(Marconi)は、ヘルツの電磁波発生器にアンテナとアースを付けて2.5kmの無線電信に成功 出展: 1905年日本海海戦において、ロシア・バルチック艦隊の発見が「敵艦見ユ」と無線電信で通報され、日露戦争の勝利を導く糸口となった 軍艦三笠に搭載の三六式無線電信機は、明治36年(1903)旧制二高の木村駿吉教授が開発。送信機は火花放電、受信機はコヒラー検波器を使ってコイル駆動で記録紙に出力するもので、80海里(約150km)以上の通信到達距離を達成 出展: その後真空管が発明されて、コヒーレントで強力な電磁波が発生できるようになり、通信距離が比較的に延びることとなる

30 何故コヒーレント光が望ましいのか コヒーレントな電磁波を用いる利点
コヒーレントな電磁波はスペクトル純度が高い(つまり、単一周波数)ので、受信機において、周波数同調(選択)を行い、狭帯域に高利得の信号増幅を行うことにより、微弱な信号でも受信できる。(長距離伝送が可能) スペクトル純度が高い(単一周波数)ので、狭帯域の指向性アンテナなどを用いることができ、特定の方向にのみ強く信号を送ることができる。つまり、伝送の指向性が高い。(長距離伝送が可能) スペクトル純度が高く搬送波の位相が揃っている(位相雑音が少ない)ので、より速い速度での変調が可能。また、位相や周波数を変調することも可能となり、高い伝送レートでの信号伝送が可能。(送れる情報量が多い) スペクトル純度が高く、占有スペクトル幅が不必要に広がらないので、同一周波数帯を多くのチャンネルで共用できる。(周波数利用効率が高い) このように、コヒーレントな電磁波を用いる通信は、インコヒーレントな電磁波を用いる場合に比べて多くの利点を有している。従って、白熱電球やLEDのようなインコヒーレント光を用いるよりも、レーザーのようにコヒーレント光を用いる方が望ましい。

31 レーザー レーザーとは、光の発振器 Amp. 電気の発振器 正帰還回路 + 光増幅媒体 光の正帰還回路 鏡 レーザー
光増幅媒体とはどのようなものか? 光の吸収 自然放出 誘導放出 減衰 増幅 入射光 出射光 発光 物質(原子系)と光との相互作用 以下の3つの課程が同時に起きている 二準位系 (原子など) E1 E2 電子など

32 熱平衡状態 E1 E2 Maxwell-Boltzmann分布 P(E) E 熱平衡状態では、励起準位の原子数は基底準位の原子数よりも少ない
k: ボルツマン定数 T: 媒質の温度 n1> n2 吸収 誘導放出 n2: 励起状態の原子数 n1: 基底状態の原子数 正味では減衰 誘導放出の起きる確率 = Bn2 I 吸収の起きる確率 = Bn1 I I: 入射光の強度 B: アインシュタインのB係数 自然放出の起きる確率 = An2 A: アインシュタインのA係数 Bn1 I > Bn2 I 熱平衡状態では、吸収の確率 > 誘導放出の確率となり、入射光は減衰して出てくる

33 反転分布 反転分布 E1 E2 P(E) E 励起準位の原子数が基底準位の原子数よりも多い状態を反転分布という Tが負(負温度状態)
n1< n2 誘導放出 吸収 n2: 励起状態の原子数 n1: 基底状態の原子数 正味では増幅 Bn1 I < Bn2 I 反転分布では、誘導放出の確率 > 吸収の確率となり、入射光は増幅されて出てくる レーザーとは、何らかの方法で反転分布を作り出し、放射の誘導放出(Stimulated emission)を用いて光を増幅する装置

34 出展: www.phlab.ecl.ntt.co.jp/master/04_module/002.html
半導体レーザー 半導体レーザー (Laser Diode: LD) 光を増幅する媒体が半導体からなり、 pn接合への電流注入により、電子の反転分布状態を作り出せる 特徴: ・ コンパクト (チップ本体は0.3mm角程度)     ・ 取り扱い容易 (乾電池2本程度で動作可能)     ・ 直接変調で数Gbpsの高速変調が可能     ・ 高信頼性 (通信用のInGaAsPレーザは100万時間以上の寿命に)     ・ 安価 (FTTH用LDはチップコストで数百円、CD用LDは数十円に) 電子 ホール p型 n型 へき開面(鏡面) チップの構造 出展:

35 Fabry-Perot (FP)共振器レーザー
半導体レーザの発振特性 へき開面(鏡面) Fabry-Perot (FP)共振器レーザー 2枚の平行に向き合った鏡によるFP型光共振器によって正帰還が得られ発振するレーザー 発振波長間隔 縦多モード発振 Δλ λ0 : 発振波長の中心値 neff : 実効屈折率 L : 素子長 l λ0 発振スペクトル FPレーザーの構造 単一縦モード発振 分布帰還(DFB)型レーザー 出展: 回折格子によるBragg反射により、光の分布帰還が得られ、 Bragg波長近傍の単一波長で発振 l 発振スペクトル DFBレーザーの構造 発振波長 Λ : 回折格子の周期 neff : 実効屈折率 回折格子

36 光変調 半導体レーザの直接変調 光変調器 電界吸収(EA)型光変調器
電流 光出力 化合物半導体などのpn接合に逆バイアスを印加すると、印加電界によって光吸収特性が変化し、これを利用して光の強度変調を行うもの 光信号 40GbpsEA変調器(沖電気) LiNbO3 (LN)によるMZI型光変調器 LNは、電圧を印加すると屈折率が変化する電気光学(E-O)効果を有している。 LNによる光導波路によってMach-Zehnder(MZ)型 の光干渉計を構成し、屈折率変化による光の位相変化を強度変化に変換して光変調を行うもの 変調信号(電気) 半導体レーザの電流-光出力(I-L)特性 LiNbO3(LN)光変調器 (住友大阪セメント)

37 光検出器 PINフォトダイオード(PIN-PD) 逆バイアスされたpn接合に光が照射されると強度に比例した光電流が取り出せる p+ 光 光
ホール 電子 p+ n+ i n+ i p+ 光電流 電極 逆バイアス状態の半導体pin接合 アバランシェ フォトダイオード(APD) 基本的にはPINフォトダイオードと同じであるが、アバランシェ効果により、光電流を増倍するしくみを有している (高感度)

38 光増幅器 半導体光増幅器 半導体レーザーチップ 無反射加工 半導体レーザーの両端面に無反射膜を形成するなどして、光共振器をなくしたもの (光の正帰還がかからなくなるのでレーザー発振はしない) 光ファイバー増幅器 Er添加光ファイバー増幅器 コアに、エルビウム(Er3+)などの希土類を添加 Er3+の準位 光増幅器の構成 波長980nmなどの光で励起すると 波長1.54 μm付近に光増幅利得発生 ラマン増幅器 光ファイバに非常に強い励起光を入射すると、石英ガラスの分子振動エネルギーに対応して、励起光波長より100 nm程度長い波長域に光利得が得られる

39 光合分波器 光を波長によって分ける (分光器あるいは分波器)/異なる波長の光を束ねる(合波器)
コア クラッド Si 基板 0.5 mm Arrayed Waveguide Grating この一本一本がこのような光導波路からなる l1 l2 lN 石英光導波路 スラブ導波路 50 mm Arrayed Waveguide Grating (AWG) AWGの動作原理

40 光スイッチ 電気制御-光スイッチ (光の経路を切り換えるが、ON-OFFの制御は電気で行う) スイッチング機構 特 徴 メカニカル
特 徴 出力ファイバー メカニカル (MEMS) Port1 mSオーダーの遅い切換え速度 安価 Port2 入力ファイバー 入力1 出力1 mS~mSオーダーの切換え速度比較的安価 熱光学(T-O)効果 ヒーター 入力2 出力2 + nSオーダーの高速切換え高価 - 電気光学(E-O)効果 電界印加 その他に、磁気光学(M-O)型、音響光学(A-O)型などもある 光制御-光スイッチ (光-光スイッチ or All光スイッチ) ON-OFF制御も光でやる 現在研究開発中 将来の全光信号処理システムに使われるかも?

41 光導波路の構造 コア クラッド n2 n1> n2 n1 光ファイバー 屈折率分布 n1> n2 n2 n1 屈折率分布 コア
スラブ導波路 屈折率分布 n1 n2 n1> n2 コア クラッド

42 光導波路が光を導くメカニズム n2 n1 φ1 j2 入射波 屈折波 反射波 n1< n2の場合 n2 n1 n1> n2の場合
φ2 入射波 屈折波 反射波 全反射 臨界角 qc Snellの法則 全反射 n1 n2 n1> n2 放射モード qc 2θmax 光が伝搬可能な入射角度の範囲 開口数: NA= sin(θmax)

43 全反射角 コアとクラッド界面での全反射角θcは、前スライドの臨界角より で与えられるが、 ここで、 と置いたが、Δは比屈折率差と呼ばれている
ここで、        と置いたが、Δは比屈折率差と呼ばれている 従って、n1と n2との差が小さい時、全反射角 θcは以下の式で与えられる さらに、導波路が受け入れることのできる受光角(2θmax)は、 また特に、 を開口数 (Numerical Aperture)という

44 導波路内での光伝搬 ϕ: Goos-Hänchen Shift n2 ϕ ϕ a k0n1 n1 k0n1sinθ コア θ -a
クラッドへの光の浸み出し ϕ: Goos-Hänchen Shift n2 ϕ ϕ a k0n1 n1 k0n1sinθ コア θ -a k0n1cosθ n2 n1> n2 ϕ 真空中での波数: k0=2π / λ (λ: 波長)、媒質中での波数(伝搬定数)は k0n1 光の伝搬方向の伝搬定数成分 βは、 β = k0n1cosθ 光が伝搬方向に伝わる速度は、 であり、vgを群速度(Group Velocity)という (c は光速度) 光の伝搬と垂直方向の伝搬定数成分 (k0n1sinθ)に対して、以下の式が成り立つ時、光伝搬と垂直方向に定在波ができる N: モード番号 (0, 1, 2 ‥‥)

45 導波モードと定在波 E N = 0 Δϕ = 0 E N = 1 2π E N = 2 4π

46 入射角度 光伝搬と垂直方向での定在波条件の式
で、 Goos-Hänchen Shiftの値 ϕN は一般的には入射角度 θN の関数になるが、 θN が全反射角 θc よりも十分に小さい場合には、      と近似できる。 従って、モード番号 N に対する入射角度 θN は、 モード番号がある値よりも大きくなると、全反射条件が満たされなくなり、伝搬できなくなる。つまり、伝搬可能なモードは、以下の条件を満たす。 従って、導波路内を伝搬可能なモード番号の最大値 Nmaxが存在し、以下の条件を満たす。

47 モードの数 導波路内を伝搬可能なモード番号の最大値 Nmaxは以下の式で与えられる。
ここで V は、Vパラメータ或いは規格化周波数と呼ばれている Nmaxよりも大きなモード番号のモードは伝搬できないので、カットオフにあると言う N=3 カットオフ領域 (放射モード) N=2 群速度 ω/c (k0) 1/n2 曲線の傾きはvg /cで 、群速度に対応 N=1 1/n1 モードによって群速度の値は異なる N=0 β 単一モード条件: V < π /2 導波路の分散関係

48 光ファイバーにおける導波モード n2 2a n1 Step Index型多モード光ファイバー Vパラメータ 導波モードの数
ファイバー内の基本モード(HE11)パターン 出典: 末松安晴、伊賀健一共著、光ファイバ通信入門、オーム社

49 光ファイバーの種類 モード数 屈折率分布 材 料 特 徴、用 途 コア: 屈折率n1 光ファイバー通信網に幅広く使用
材 料 特 徴、用 途 コア: 屈折率n1 光ファイバー通信網に幅広く使用 (海底、幹線、メトロ、加入者系) 様々な光部品(光スイッチ、光合分波器、光増幅器など)に加工されて使用 5~10μm コア: 石英ガラス クラッド: 石英ガラス 単一モード n2 Step Index型 コア: 屈折率n1 短距離の光伝送、光インターコネクション(コンピュータ、ストレージ筐体間データ通信)、接続容易 コア: 石英ガラス クラッド: 石英ガラス 約50μm コア: プラスチック クラッド: プラスチック 接続や取り扱いが容易なので、AV機器用データ通信に利用 n2 Step Index型 多モード コア径約50μm 一部の光ファイバー通信網で使用 (接続が容易なので主にLAN用) 比較的高価 屈折率分布 コア: 石英ガラス クラッド: 石英ガラス Graded Index型

50 光ファイバーの分散 多モード光ファイバーにおける分散 モード分散 (Mode Dispersion)
伝搬モードによって群速度 vg が異なる モード3: vg3 モード2: vg2 モード1: vg1 vg1 > vg2 > vg3 モード1を伝搬してきた光パルス モード2 入射光パルスは複数のモードに分配されて伝搬していく モード3 伝搬モードによって群速度が異なるため、光パルスの出射時刻が異なる 光パルスの幅が広がるため、符号間干渉が起こり、符号識別誤りが起こる

51 光ファイバーの分散 単一モード光ファイバーにも存在する分散 波長分散 Chromatic Dispersion
石英ガラスの材料分散  母材の石英ガラスの屈折率が波長に依存 導波路の構造分散  導波路の伝搬定数が波長に依存 l1: vg1 l2: vg2 l3: vg3 vg1 < vg2 < vg3 入射光パルスが多波長成分を有すると 波長によって群速度が異なるため、出射光パルスの時間幅が広がる 偏波モード分散 Polarization Mode Dispersion ファイバーにねじれなどがあると、直交する2つの偏波モードの縮退が解け、 2つのモード間で群速度に違いが生じるようになる

52 光ファイバーの波長分散 通常のSMFでは、波長約1.31μmにおいて、材料分散と構造分散が打ち消し合いゼロ分散となる
光ファイバーの伝搬損失と分散特性 出典: 末松安晴、伊賀健一共著、光ファイバ通信入門、オーム社 通常のSMFは、波長約1.31μmにおいてゼロ分散となるが、伝搬損失は波長1.55μm付近で最小となる

53 分散補償技術 光学的分散補償 原理: 伝送路としての光ファイバーとは逆の分散特性を有するデバイスを接続することにより、伝送路である光ファイバーの分散を打ち消すもの。(アナログ技術) 分散補償デバイスとしては、以下のものがある ・分散補償光ファイバー (Dispersion Compensation Fiber) 単一モード光ファイバー(SMF)とは逆符号の大きな分散を有する光ファイバーで、(長さに応じて)大きな分散でも広帯域に補償できる。補償可能分散量は光ファイバーの長さで決まり、固定。波長分散の補償のみに対して有効。(偏波モード分散には効果無し) ・分散補償素子 様々なタイプのものが有るが、比較的小さな分散を補償可能。補償する分散量を可変できるものも有る。ただし、応答速度は比較的遅い。 電気的分散補償 (Electronic Dispersion Compensation) 経路の切り替えなどによって伝送路の分散量が変化しても、電気的信号処理により伝送路の分散量をリアルタイムに推定し、伝送路の逆伝達関数を受信信号に乗じて分散を補償する方法。偏波モード分散にも効果が有り、近年ではこの方法が主流となってきている。(デジタル技術)

54 伝送帯域 同軸ケーブルによる伝送 Loss2/B = 一定 Loss: 伝搬損失(dB/m), B: 伝送帯域(Hz)
出展: Loss2/B = 一定 Loss: 伝搬損失(dB/m), B: 伝送帯域(Hz) 同軸ケーブルの場合、伝搬損失によって帯域が制限される 光ファイバーによる伝送 多モード光ファイバー  主にモード間の群速度差によるモード分散によって制限 B: 帯域(Hz), L: 長さ(m) Δ = 0.005とすると、BL = 40MHz・km 単一モード光ファイバー  波長分散と偏波モード分散によって制限

55 単一モード光ファイバーの伝送帯域 波長分散による帯域制限(分散補償を行わない場合)
i) 光源の波長スペクトル幅 Δλsが広い(FP-LDやLEDを使用の)場合 B: 帯域(Hz)、L: 長さ(m)、Δλs: 光源のスペクトル幅 (nm) 例えば、Δλs = 1nm、L = 50kmの時、B = 1GHz ii) 光源の波長スペクトル幅 Δλs が狭い(DFB-LDを使用の)場合 B: 帯域(Hz)、L: 長さ(m) 従って、L = 100kmに対して、B = 6.8 GHz 光ファイバーの場合、伝搬損失は通常0.2dB/kmと同軸ケーブルに比べて遥かに小さいので、分散による信号波形の歪が伝送帯域を制限している。 分散による光パルスの広がりは、多モード光ファイバーの場合はモード分散によって制限される。一方、単一モード光ファイバーでは、モード分散はないが波長分散などによって制限される。 ただし、分散補償を行う場合は、上の制限には依らない

56 光増幅器による2R (Reamplification、Reshaping)再生
伝送中継技術 光-電気変換 OE/EOによる3R (Reamplification、Reshaping、Retiming)再生 送信機 OE/EO 中継器 OE/EO 中継器 OE/EO 中継器 受信機 光中継器の構成 出典: 末松安晴、伊賀健一共著、光ファイバ通信入門、オーム社 光増幅器による2R (Reamplification、Reshaping)再生 光信号を一旦電気信号に変えることなく、光のまま増幅、等化を繰り返して中継 送信機 光増幅器 光増幅器 光増幅器 受信機

57 3R再生とは 振幅増幅 (Reamplification) 弱くなった信号強度を増幅して強くする 減衰 増幅
波形整形 (Reshaping) 分散などの影響で劣化した波形を整える タイミング再生 (Retiming) 符号のビットタイミングがズレたのを修正する 1 1 1 ファイバー 減衰 1 1 1 増幅 1 1 1 t t t 波形劣化 1 1 1 ファイバー 1 1 1 1 1 1 波形整形 t t タイミングのズレ タイミング 修正 1 1 1 ファイバー 1 1 1 1 1 1 t t t

58 各種光伝送方式 強度変調-直接検波 (Intensity Modulation - Direct Detection: IM-DD)方式
初期の光通信から用いられている方式で、現在でも広く用いられている。光源の光の強度を変調して情報を送り、受信側では受光素子により二乗検波をして情報を取り出す。光のコヒーレンス性はあまり利用していない。従って、低ビットレートであれば発光ダイオード(LED)などを光源に用いることもあり、赤外線リモコンなどの伝送方式がこれにあたる。 コヒーレント光伝送方式 光のコヒーレンスをより積極的に利用する先進的光伝送方式。光の振幅、周波数、位相などに情報を載せるASK, FSK, PSKなどがある。IM-DD方式に比べて受信感度が改善されたり、周波数利用効率に優れたり、多くのメリットがあり、今後、主流になっていくものと思われる。光源としては特に位相雑音の少ない(スペクトル線幅の狭い)レーザー光が求められる。 アナログ伝送方式(サブキャリヤ伝送方式) CATVによる映像のアナログ伝送や、マイクロ波の光伝送、リモートアンテナなど、 ごく限られた用途で用いられている。光のコヒーレンス性は利用していない。

59 強度変調-直接検波光通信方式 強度変調-直接検波 (Intensity Modulation - Direct Detection: IM-DD)方式 従来から広く用いられてきた光通信方式。光のコヒーレンス性はあまり利用していない 変調信号 (電気) LD PD 光ファイバー 検波出力信号(電気) PDによる直接検波 LDのI-L特性 PDによる直接検波では、入射光強度に比例(従って光電界の2乗に比例)した光電流出力が得られるので、二乗(自乗)検波と呼ばれている。従って、入力光信号の電界の位相情報は失われてしまう。 光出力 光信号 電流 変調信号(電気) LDの強度変調

60 光ヘテロダイン検波 コヒーレント光伝送方式では、光ヘテロダイン/ホモダイン検波などの光検波方式が用いられる。 合波器(BS) 受光器(PD)
IFアンプ/ フィルター ベースバンド 復調器 信号光 fS fIF=fS-fLO 局部発振光 fLO LD 周波数弁別器 光ヘテロダイン検波回路のブロック図 信号光は局部発振光と混合(合波)されて共に受光器(PD)に入る。従って信号光の電界の位相情報がPDの検波出力電流に保存される。 通常、LDの発振波長(周波数)は揺らいでいるため、LDからの局部発振光と信号光との周波数差(中間周波数)をモニターし、局部発振LDの駆動電流にフィードバックをかけることにより、局部発振光LDの発振波長を信号光にロックする光PLLなどの手法が用いられる。

61 強度(振幅)変調と位相変調 出典: NTT Tech. Rev., vol. 9, no. 3, 2011

62 光変調方式 光ファイバー通信で用いられる変調方式 デジタル変調 変調対象 アナログ変調 二値 (バイナリ) 多値 QASK AM (IM)
ASK (OOK) 1 振幅変調 QPSK I Q 01 11 00 10 FM FSK 周波数変調 1 PM PSK I Q 位相変調 1 16QAM x y x y 1 偏波変調

63 デジタル変調方式 OOKの場合、 位相は関係無い つまり、コヒーレントでなくても良い o t Em e j -Em I Q
I Q e(t) = Em sin (wt + j) OOK : on-off keying I Q ASK : amplitude-shift keying constellation map QASK I Q QASK : quadrature amplitude-shift keying FSK : frequency-shift keying PSK : phase-shift keying I Q BPSK 1 I Q QPSK 11 01 00 10 I Q 8PSK 000 001 010 011 101 100 110 111 QPSK : quadrature phase-shift keying DPSK : differential phase-shift keying QAM : quadrature amplitude modulation I Q I Q 4QAM (QPSK) 16QAM

64 搬送波(光源)の位相雑音の影響 コヒーレント光伝送には特に狭スペクトル線幅の光源(レーザー)が求められる理由
出典: NTT Tech. Rev., vol. 9, no. 3, 2011

65 デジタルコヒーレント光伝送 デジタルコヒーレント方式の概要 出典: 信学会誌H24年12月、号 総合報告

66 電気的分散補償 コヒーレント検波方式においては、光領域における信号の位相情報が検波後の電気信号においても保存される。そのため、波長分散や偏波モード分散による信号波形歪をデジタルフィルターによって補償できる。 波長分散は線形現象であり、従って波長分散による線形な波形歪は、トランスバーサルフィルターでモデル化できる。 送信信号系列を {Sn}、伝送路のインパルス応答を {h0, h1, ‥, hL}とすると、受信信号系列 {rn}は、線形畳込み演算 ただし、インパルス応答の長さ L は、分散の時間広がりに対応 によって与えられる。 そこで、伝送路の分散量を推定し、伝送路の逆伝達関数のインパルス応答と受信信号との畳込み演算処理を行う。畳込み処理には、有限インパルス応答フィルタ(FIR)や周波数領域等化(FDE)が用いられる。 また、伝送路の分散量の推定には、送信信号にパイロットトーンを重畳して位相差を検出する方法や、情報系列に既知のトレーニングシンボルを埋め込む方法などがある。

67 光通信は何故高速(大容量)なのか? 光ファイバー通信における信号多重化

68 電気信号の多重化 時分割多重化: Time-division multiplexing (TDM)
1本の電話回線で複数の人が同時に会話するには? t2 t3 t1 時間 t1 t2 t3 1ミリ秒 周波数領域多重化: Frequency-division multiplexing (FDM) 利用可能な周波数帯域 f1 一人当たりの帯域 f2 f3 f4 周波数

69 電気による多重化(TDM, FDM)伝送 変調速度の高速(高ビットレート)化によって多重度を稼ぐ 2.4 Gbps 光源 光変調 光検出器
復調 光ファイバー 2.4 Gbps 2.4 Gbps 電気によるTDMまたはFDM bps: bit per second Multiplexer Demultiplexer 1Gbps 1Gbps 100 Mbps 100 Mbps 64 kbps 64 kbps

70 光ファイバー伝送の大容量化の歴史 第一世代(1st gen.) ETDM, EFDM (電気的多重化)
F-32M F-100M F-400M 1980 1985 1990 1995 2000 2005 0.01 0.1 1 10 100 1,000 10,000 FS-400M F-600M F-2.4G F-1.6G F-1.8G FA-10G FA-2.4G FSA-2.4G new F-600M Year Transmission capacity (Gbit/s) With optical amplifier SDH System With dispersion shifted optical fiber With DFB-LD With single-mode fiber Commercial system ETDM Laboratory 1980年~1995年は電気的多重化によって大容量化が図られた(第一世代) Developing history of optical-link capacity in Japan

71 一本の光ファイバーによる波長多重(WDM)伝送
多波長化によって多重度を稼ぐ 1本の光ファイバー λ1 λ1 1Gbps 光源 光変調 光検出器 λ2 64 kbps λ2 光源 光変調 光検出器 100 Mbps λ3 λ3 光源 光変調 光検出器 復調 Wavelength Multiplexer Wavelength Demultiplexer 復調 復調 1Gbps 1Gbps 100 Mbps 100 Mbps 64 kbps 64 kbps

72 第一世代、第二世代での多重化技術 電気的多重化 (1st generation) time (frequency)
Ch1 Ch2 Ch3 - Electrical time-division multiplexing (ETDM) - Electrical frequency-division multiplexing (EFDM) Up to 100Gbps, limited by response speed of electronics 光学的多重化 (2nd generation) - Wavelength division multiplexing (WDM): 波長多重伝送 Using many different wavelength as different channel More than 10T bps transmission (40G bps×273 wave=10.9T bps, 117km) have been demonstrated in 2001 λ1 λ2 λ3 λ4 λ5 λ6 λ7 WDM transmission C-band L-band 1460nm 1530nm 1565nm 1625nm S-band ~21 THz - Optical time-division multiplexing (OTDM) Bandwidth of silica optical fiber

73 電気的TDMと光学的WDMの併用による超多重化
Laser PD DEMOD 40G bps MOD Wavelength Multiplexer Demultiplexer Single fiber λ1 λ2 λ3 120G bps Electrical Multiplexing Electrical Demltiplexing

74 道路におけるトラフィック増大の方法 制限速度15 mphの一般道路 多重化無し 制限速度の高速化(60 mph): 高速道路
ETDM, EFDM 高速道路(制限速度60 mph)の多車線化 ETDM, EFDM+ WDM, OTDM, SDM

75 光ファイバー通信における大容量化 電気領域での多重化 (時分割多重:ETDM、周波数:EFDM) 高速の電気信号 数~数十Gbpsの電気信号
電気領域での多重化 (ETDM, EFDM)+光領域での波長多重化(WDMなど) 1本の光ファイバー 各々が数~数十Gbpsの電気信号 波長による多重化 (数十~数百波長)

76 光ファイバー伝送の大容量化の歴史 25年間で4桁向上 第三世代 デジタルコヒーレント
1995年以降は波長多重化によって大容量化が図られた(第二世代) 第一世代 TDM技術(電気)による 第二世代 光増幅, WDM(光)による F-32M F-100M F-400M 1980 1985 1990 1995 2000 2005 0.01 0.1 1 10 100 1,000 10,000 FS-400M F-600M F-2.4G F-1.6G F-1.8G FA-10G FA-2.4G FSA-2.4G new F-600M F-6M 伝送容量 (Gbit/s) WDM System 光増幅器使用 SDH System 分散シフト光ファイバー使用 DFB-LD使用 単一モード光ファイバー使用 商用システム ETDM WDM + ETDM 実験 OTDM WDM + OTDM 光ファイバー 日本縦断網完成 FTTHサービス開始 1.6T (40G, 40波) 25年間で4桁向上 日本における光ファイバー伝送容量の変遷

77 第三世代での多重化技術 Code-division multiplexing (CDM) (3rd generation)
Digital coherent optical transmission Multilevel modulation ‥‥ QAM, DPSK/DQPSK/DP-QPSK etc. Electrical Coherent transmission ‥‥ modulating both amplitude and phase of lightwave Optical orthogonal detection, Optical heterodyne/homodyne detection Digital signal processing (DSP) ‥‥ Error correction code (FEC) Electrical

78 光ファイバー伝送の大容量化の歴史 What technology will emerge next Gen.? 1980 1990 2000
2010 2020 year 100T 10T 1T 100G 10G 1G 100M 1P Transmission capacity per single fiber (bps) Electrical Mux.(Laboratory) Electrical Mux.(Commercial) Optical Mux.(Laboratory) Optical Mux.(Commercial) ETDM EFDM 1st Gen. 2nd Gen. 3rd Gen. WDM OTDM Multilevel Modulation Digital coherent What technology will emerge next Gen.?

79 複数本の光ファイバーによる空間多重(SDM)伝送
1Gbps 光源 光変調 光検出器 64 kbps 光源 光変調 光検出器 100 Mbps 光源 光変調 光検出器 復調 光ファイバー 復調 復調 1Gbps 1Gbps 100 Mbps 100 Mbps 64 kbps 64 kbps

80 第四世代での多重化技術 Space-division multiplexing (SDM) Optical (4th generation)
1. SDM using an optical fiber with multi-core 1.01P bps (380G bps×222 wavelength×12 core) 52.4 km transmission with multi-core fiber (NTT, Fujikura Ltd, Hokkaido Univ. and Technical University of Denmark reported in ECOC2012) core Ch1 SDM transmission with a multi-core fiber Ch2 Ch3 Ch4 core 125 μm Cross section of 19 core fiber (Furukawa Electric Co., Ltd) clad core Conventional single-core fiber 125 μm

81 第四世代での多重化技術 Space-division multiplexing (SDM) Optical (4th generation)
2. SDM using spatial modes with a multi-mode fiber Mode1 Mode2 Mode3 Mode4 Mode5 SDM transmission with a multi-mode fiber LP01 mode LP02 mode LP11 mode LP21 mode LP31 mode Propagating modes in a multimode fiber Each spatial mode transmit different signal as different channel

82 第四世代での多重化技術 “Space” is the final frontier of optical communication
3. Multi-input/multi-output (MIMO) transmission with a multi-mode fiber Rx1 Rx2 Rx3 Tx1 Tx2 Tx3 Tx1 Tx2 Tx3 Rx1 Rx2 Rx3 MIMO transmission for wireless systems “Space” is the final frontier of optical communication

83 光ファイバー伝送の大容量化の歴史 1P (12 core) 1980 1990 2000 2010 2020 年 100T 10T 1T
100G 10G 1G 100M 1P 305T (19コア) 109T (7コア) 1.6T 光ファイバー1本当たりの伝送容量 (bps) 電気的多重化(実験) 電気的多重化(商用) 光学的多重化(実験) 光学的多重化(商用) ETDM EFDM 第一世代 第二世代 第三世代 第四世代 WDM OTDM 多値変調 デジタルコヒーレント マルチコア 光ファイバー 5.5T ( ) +40%/year 国内の全トラフィック

84 光ファイバー伝送大容量化の歴史と展望 大容量化の方法 光ファイバ1本当たりの伝送容量 第一世代(1980 ~ 1990年代)電気による多重化
電子回路の応答速度により、100Gbps程度が限界 - 電気信号による時分割多重(ETDM) - 電気信号による周波数分割多重(EFDM) 第二世代(1990 ~ 2000年代)光学技術による 電気による多重化と組み合わせることにより10Tbpsを実現 - 光信号による時分割多重(OTDM) - 波長多重(WDM) 第三世代(2000 ~ 2010年代)電気信号処理による 多値符号化により100Tbpsは可能か? - デジタルコヒーレント多値変調 第四世代(2010年 ~  )光の空間多重による - マルチコア光ファイバー - マルチモード光ファイバー + MIMO 1Pbps以上も可能

85 信号の多重化伝送 複数の信号を1本の伝送路に乗せる手法 多重化方式 多重化を行う領域
時分割多重 Time Division Multiplexing (TDM) 電気信号の時間 周波数多重 Frequency Division Multiplexing (FDM) 電気信号の周波数 サブキャリヤ多重 Subcarrier Multiplexing (SCM) 電気信号の周波数 符号分割多重 Code Division Multiplexing (CDM) 電気信号の符号 光時分割多重 Optical Time Division Multiplexing (OTDM) 光信号の時間 波長分割多重 Wavelength Division Multiplexing (WDM) 光の波長 光符号分割多重 Optical Code Division Multiplexing (OCDM) 光信号の符号 偏波分割多重 Polarization Division Multiplexing (PDM) 光の偏波(偏光)面 空間多重 Space Division Multiplexing (SDM) 空間

86 光伝送大容量化の技術トレンド デジタルコヒーレント光伝送方式 多値変調 ‥‥ QAM, DPSK/DQPSK/DP-QPSK等
コヒーレント光伝送 ‥‥ 光の振幅と位相を変調        光直交検波、光ヘテロダイン/ホモダイン検波 エレクトロニクスの活用 デジタル信号処理(DSP) ‥‥ 誤り訂正符号(FEC) 波長および偏波モード分散補償 マルチコア光ファイバー 1本の光ファイバーに複数のコア(10コア程度)を設けた光ファイバーによる空間多重 マルチコア光ファイバーを用いた1.01Pbps (456Gbps×222波長×12コア)空間多重光伝送実験に成功 (NTT、フジクラ、北大、デンマーク工科大共同 2012年9月) 多モード光ファイバー Few Mode Fiber(FMF) + 無線のMIMO技術を活用 上記の方式を組み合わせることにより、1本の光ファイバーで1Pbps以上の光伝送が可能に。

87 交換方式 回線交換 パケット交換 例) 電話 鉄道のポイント切換え 回線交換器 エンドユーザーによって一つの回線が専有される
例) データ通信、インターネット 宅配便 パケット交換器 ラベル データ 一つの回線が皆でシェアされる

88 クロスバー交換器 Aさん Bさん Cさん Dさん Xさん Yさん Zさん Wさん クロスバー交換器 回線交換 A - Z B - W
C - Y D - X A - X B - Y C - W D - Z ノンブロッキング 非閉塞 電話のクロスバ交換器

89 回線交換 回線交換のメリット 特定のエンドユーザーによって一旦回線が確保されると、通信が終了し、回線が開放されるまでは、安定で良質の通信が可能 回線が混んできても、一旦接続されるとリアルタイムの通信が可能なため、電話においては自然な会話が保証できる 交換器の構造がシンプル 一か所に大量のストリームデータなどを伝送する場合(長編映画のダウンロードなど)、伝送効率が高い 回線交換のデメリット 特定のエンドユーザーによって一旦専有された回線は、たとえデータが全く流れていない時間があったとしても、他のユーザーがそこにデータを流すことはできない

90 パケット交換 データをパケット(Ether Netではフレーム, ATMではセルと言う)という単位に分割して送出
パケットにはデータと同時に、宛先を示す情報が書き込まれている 交換器は経路表に基づきパケットをいずれかのポートに送出する パケット交換器 宛先 ポート 経路表 1 2 3 4

91 パケットの構造 パケットの構造 データ ヘッダ データ ヘッダ データ ヘッダ データ ヘッダ データ パケット 宛先アドレス
送信元アドレス IPパケット ヘッダ部: 20バイト + α, データ部: 可変長 Ether Net ヘッダ部: 22バイト, データ部: 可変長(46~1500バイト) ATMセル ヘッダ部: 5バイト, データ部: 48バイトの固定長 宛先アドレス IPパケット IPアドレス: 32ビット (IPv4), 128ビット (IPv6),          Ether Net MACアドレス: 48ビット

92 パケット交換のしくみ 宅配便との比較 パケット交換 宅配便 荷物 データ (ペイロード) ヘッダ (宛先アドレス) 荷札 (送付先)
パケット交換器, ルーター 集配センター 経路表作成, 宛先検索, 経路制御 仕分け作業, 荷物の積込み 道路, (鉄道) リンク リンク障害 交通事故などによる荷物の破損

93 パケット交換の特徴 パケット交換の特徴 一つの回線を皆でシェアし、エンドユーザーによる回線の専有はない データと同時に制御信号が送られる
パケット交換のデメリット 回線が混んでくると遅延が大きくなり、通信のリアルタイム性が損なわれる 電話においては会話が不自然となる。 例) IP電話などで生じる 一か所に大量のストリームデータなどを伝送する場合、伝送効率が低くなる

94 光ネットワーク機器(ルーター) ノード 光リンク (光ファイバ) ノード (ルーター) ノード (ルーター) ハイエンドルーター ノード
光(O) – 電気(E) – 光(O) 受光素子 (PD) 電子スイッチ 発光素子 (LD) 光変調器 光信号 バッファ メモリ 発光素子 (LD) 光変調器 電気信号 ヘッダ 解析 光デバイス 発光素子 (LD) 光変調器 宛先検出 電子デバイス ルーター(パケット交換機)の構成

95 ノードの処理速度がボトルネック ノード 光リンク (光ファイバ) ノード (ルーター) ノード (ルーター) ノード 料金所 渋滞 高速道路
リンク容量: 10Tbps (40Gbps × 256波 WDM) ノード処理速度: 100Gbps

96 フォトニックノードによるボトルネック解消
光リンク (光ファイバ) ノード (ルーター) ノード (ルーター) ノード ETCシステム 高速道路 リンク容量: 10Tbps (40Gbps × 256波 WDM) ノード処理速度: 100Tbps

97 フォトニックネットワーク 光リンクを流れる光信号を一旦電気に変換することなく、光のまま交換する次世代の光ネットワーク
- Optical Add/Drop Multiplexer(OADM) WDM ring NW OADM OXC - Optical Cross Connect(OXC) リング型ネットワーク - λ-MPLS, G-MPLS Mesh NW OPS (MPLS: Multi-protocol label switching) - Optical Burst Switching(OBS) - Optical Packet Switching(OPS) メッシュ型ネットワーク

98 Optical Add/Drop Multiplexer(OADM)
波長多重化された信号の中から、ある特定波長(チャンネル)の信号のみ取り出したり、加えたりするもの OADM l1 ‥‥ ln li WDM信号 OADM WDMリングNW R-OADM (Reconfigurable OADM) Add/Dropする波長を任意に設定できるもの OADM l1 ‥‥ ln li WDM信号 OADM WDMリングNW

99 波長合分波器(AWG) N×N AWG 1個で N×N波長ルーターが構成可能 λ1, λ2, λ3, …, λN
λ2, λ3, λ4, …, λ1 λ3, λ4, λ5, …, λ2 λN, λ1, λ2, …, λN-1 SiO2 コア SiO2 クラッド Si 基板 0.5 mm このような石英光導波路からなるAWG シリコン光導波路を用いれば、極微小なAWGが実現可能 50 mm 大きさ1/1000 50 mm Arrayed Waveguide Grating (AWG) Si細線光導波路によるAWG

100 波長可変レーザー リング共振器による熱光学式 波長可変レーザーの構造 作製したSi細線光導波路による リング共振器型波長フィルター
K. Nemoto, et al., Appl. Phys. Express 5, (2012) リング共振器による熱光学式 波長可変レーザーの構造 100 m 作製したSi細線光導波路による リング共振器型波長フィルター 波長可変特性

101 Si細線導波路による熱光学(T-O)光スイッチ
チップサイズは僅か1.4 mm×2 mm Port1 Port2 Port8 MZ型Si細線導波路光スイッチ素子 1×8光スイッチの写真 スイッチング特性 T. Chu et al., Optics Express 13, (2005) T. Chu et al., Proc. SPIE 6477 (2007) 101

102 Y.-H. Kuo et al., Optics Express 14, 11721 (2006)
四光波混合による40Gb/s波長変換 Y.-H. Kuo et al., Optics Express 14, (2006) 逆バイアスされた 8cm長 SOI pin リブ導波路による40G波長変換 波長変換効率: -8.6dB Pump power: 450 mW 40Gbps NRZ波長変換実験系 波長変換出力スペクトル 40Gbps Eye Diagram 左: 入力信号 右: 波長変換出力信号 102

103 光による符合ラベル処理 グレーティング光ファイバーを用いる方式 l1 l4 l3 l2 l2 l1 l3 l4 t l2 l3 l4 l1
データ データ データ t 波長ラベル 波長ラベル l2 l3 l4 l1 サキュレータ グレーティング光ファイバー グレーティングパターンとラベルが一致した場合 一致しないと データ データ データ t

104 光バッファ 1. 光遅延線路と光スイッチによる 光遅延線路 光遅延線路 光遅延線路 光スイッチ 光スイッチ 光スイッチ
2. Slow Lightによる 電磁誘導透過 EIT: Electromagnetically Induced Transparency |1> |3> |2> 0.9μK(約−273℃) ナトリウム 300,000km/s → 28m/s 70~90K(-203~-183℃) ルビジウムRb 300,000km/s → 1km/s

105 光パスネットワーク 光パスネットワークとパケットネットワークが共存した新しいネットワーク形態 将来の光ネットワークのイメージ

106 光集積回路(光IC) 様々な光デバイスを小型化し、集積化することにより、本格的な光集積回路の実現を目指す 光集積回路(光IC) 光スイッチ
Photonic Network Photonic node 光集積回路(光IC) 光スイッチ Si光導波路 光合分波器 通信用光デバイス 次世代フォトニック ネットワーク フォトニック結晶

107 電子集積回路と光集積回路の集積度の比較 電子集積回路 ? の法則 光集積回路 ムーアの法則 (×2/1.5年) 109 Core2Duo
Pentium4 Tr数:4200万個 108 電子集積回路 107 ムーアの法則 (×2/1.5年) Pentium Tr数:310万個 集積化光素子数 Siベース 光集積回路? 106 Intel286 Tr数:13.4万個 16 ch R-OADM (AWG×4, TO-SW×64) 87mm 74mm 105 104 ? の法則 K. Okamoto et al., Electron. Lett (1996) Intel4004 Tr数:2300個 103 シリカベースPLC 光集積回路 102 現在 1970 1980 1990 2000 2010 2020 107

108 ご聴講ありがとうございました

109 レポート課題(2回目) 以下の問いについて述べよ。
 以下の問いについて述べよ。 光ファイバーの中を信号(光パルス)が伝搬する際に、信号波形が歪む様々な要因について述べ、またその歪を補正する方法についても述べよ。 単一モード光ファイバーを用いて長距離伝送を行う場合、光源としてどんなLDを用いるが望ましいか? LDの動作原理にも触れながら、そのようなLDの実現方法についても述べよ。 コヒーレント光伝送方式について、従来の光伝送方式(IM-DD)と対比しながら、その違いや特長を述べよ。 光ファイバー通信が大量の情報を送ることができる理由を述べよ。また、これまでどんな経緯をたどって大容量化がなされてきたか? 将来の光ネットワークであるフォトニックネットワークについて述べよ。 〆切: 2/10(金) 提出先: 私のメールボックス(1号館玄関ロビー)に投函または私の部屋まで持参


Download ppt "通信工学概論 Fundamentals of Electrical Communication コミュニケーション工学B Communication Systems Engineering B 2017年 1/20, 1/27, 2/3講義資料 光ファイバー通信入門 於 101大講義室 山田 博仁."

Similar presentations


Ads by Google