Download presentation
Presentation is loading. Please wait.
1
大学院物理システム工学専攻2004年度 固体材料物性第12回 -磁気光学効果の電子論-
大学院物理システム工学専攻2004年度 固体材料物性第12回 -磁気光学効果の電子論- 佐藤勝昭 ナノ未来科学研究拠点
2
前回のレスポンス EDFAに興味(石井,木内,) Erという聞き慣れない元素が使われているが、知らない元素に多くの可能性を見た(石井)
DFBレーザの技術・原理に興味(松山,佐藤平,市川,永吉) ある技術にとってはだめなものが別の技術では活きることもあるという話(松山) 光ファイバーの損失(湯舟) 光アイソレータ材料(湯舟) 光アイソレータがEDFAにも使われ、1つの開発が多くの応用をもたらすことを実感(富樫) 戻り光を防ぐためアイソレータを使っている話、アイソレータには偏光を用いているという話(大野)
3
つづき 光アイソレータの必要性を示したラング先生の偉さ(石原)
光アイソレータの話を聞いて、磁気光学効果が実際のデバイスでどう使われているかがわかった(浦川) 磁気光学効果を用いて偏光方向を変えるというアイデア(岩見) 光通信には半導体レーザ、光ファイバ、増幅器以外にアイソレータなどが用いられており、使われているアイデアも納得できることに感心(秋山) 光通信に使われているさまざまな技術を初めて知った(春田) 光ファイバーが通信だけでなくセンサにも用いられていること(秋山) レイリー散乱(山田)
4
つづき 光通信に目に見えない波長の光が使われているということ(長谷川) 半導体とアイソレータをMBEで作る話(石田)
偏光無依存アイソレータが面白そう(永吉) EDFAとアイソレータ技術が光通信に重要ということ(町田)
5
もっと知りたい 光アッテネータや光スイッチの技術(吉村) 光通信で、できるだけ多くの光パルスを送るために使われている技術(秋山)
光導波路上でアイソレータやサーキュレータを作るための技術(永塚) TE, TM波って何だっけ(市川) WDMで何波長くらい多重しているか(杉沢) 光アイソレータの挿入損失は( ) 光アイソレータを使わない場合があるそうだが、ノイズは問題ないのか。(水澤) サーキュレータを電子のコントロールに使えるか(全) EDFAの発光の機構。4fの遷移によると聞いたことがある(新部)
6
光アッテネータ 面内磁化の磁性ガーネット結晶を利用。 あらかじめ面内方向に磁界を加え飽和させておく
これにより磁区をなくしておく 面直方向に磁界を印加し、磁化ベクトルを面内から面直に傾けていく 面直成分は、磁界とともに連続的に増大する。
7
光スイッチ 偏光子、ファラデー回転子、1/2波長板、複屈折結晶からなる。回転方向の切り替えによって2つのpathを切り替えることができる。
8
光ソリトン通信 ソリトン:孤立波(長距離にわたり波形の乱れなく進行する。) 非線形効果 サインゴードン方程式
9
光導波路上にアイソレータを作る
10
導波路形アイソレータ 腰塚による
11
マッハツェンダー形アイソレーター
12
リブ形アイソレータ
13
TE、TM波 TE: transverse electric TM: transverse magnetic
14
光アイソレータの挿入損失 1.55μm用:0.3dB以下 0.8μm用: 3dB以下
15
サーキュレータを電子のコントロールに使えるか
あくまで電磁波に対するもので、電子についてのサーキュレータはありません。
16
EDFAの発光の機構。4fの遷移? その通りです。
17
光通信デバイスと磁気光学材料
18
要素技術1 半導体レーザ LED構造において、劈開面を用いたキャビティ構造を用いるとともに、ダブルヘテロ構造により、光とキャリアを活性層に閉じ込め、反転分布を作る。 DFB構造をとることで特定の波長のみを選択している。
19
要素技術2 光ファイバー 材料:溶融石英(fused silica SiO2) 構造:同心円状にコア層、クラッド層、保護層を配置
光はコア層を全反射によって長距離にわたり低損失で伝搬 東工大影山研HPより
20
光ファイバーの伝搬損失 短波長側の伝送損失はレーリー散乱 長波長側の伝送損失は分子振動による赤外吸収
1.4μm付近の損失はOHの分子振動による Physics Today Onlineによる 佐藤・越田:応用電子物性工学(コロナ社、1989)
21
要素技術3 光検出 フォトダイオードを用いる 高速応答の光検出が必要
pinフォトダイオードまたはショットキー接合フォトダイオードが使われる。 通信用PDの材料としてはバンドギャップの小さなInGaAsなどが用いられる。
22
要素技術4 光中継:ファイバーアンプ 光ファイバー中の光信号は100km程度の距離を伝送されると、20dB(百分の一に)減衰する。これをもとの強さに戻すために光ファイバーアンプと呼ばれる光増幅器が使われている。 光増幅器は、エルビウム(Er)イオンをドープした光ファイバー(EDF:Erbium Doped Fiber)と励起レーザーから構成されており、励起光といわれる強いレーザーと減衰した信号光を同時にEDF中に入れることによって、Erイオンの誘導増幅作用により励起光のエネルギーを利用して信号光を増幅することができる。 旭硝子のHPhttp://
23
要素技術5 光アイソレータ 光アイソレータ:光を一方向にだけ通す光デバイス。
光通信に用いられている半導体レーザ(LD)や光アンプは、光学部品からの戻り光により不安定な動作を起こす。 光アイソレータ:出力変動・周波数変動・変調帯域抑制・LD破壊などの戻り光による悪影響を取り除き、LDや光アンプを安定化するために必要不可欠な光デバイス。 信光社
24
要素技術6 波長多重(WDM=wavelength division multiplexing)
この方式は、波長の異なる光信号を同時にファイバー中を伝送させる方式であり、多重化されたチャンネルの数だけ伝送容量を増加させることができる。 通信用光ファイバーは、1450~1650nmの波長域の伝送損失が小さい(0.3dB/km以下)ため、原理的にはこの波長域全体を有効に使うことができる。
25
光通信における 磁気光学デバイスの位置づけ
戻り光は、LDの発振を不安定にしノイズ発生の原因になる→アイソレータで戻り光を阻止。 WDMの光アドドロップ多重(OADM)においてファイバグレーティングと光サーキュレータを用いて特定波長を選択 EDFAの前後にアイソレータを配置して動作を安定化。ポンプ用レーザについても戻り光を阻止 光アッテネータ、光スイッチ
26
半導体レーザモジュール用アイソレータ Optical isolator for LD module Optical fiber
Signal source Laser diode module
27
偏光依存アイソレータ
28
偏光無依存アイソレータ Faraday rotator F ½ waveplate C Birefringent plate B1
Fiber 2 Fiber 1 Forward direction Reverse direction ½ waveplate C Birefringent plate B2 B2 B1 F C Birefringent plate B1 Faraday rotator F
29
光アドドロップとサーキュレータ
30
光サーキュレータ A B C D
31
磁気光学サーキュレータ Faraday rotator Prism polarizer A Reflection prism
Half wave plate Port 1 Port 2 Port 4 Port 3 Prism polarizer B
32
アイソレータの今後の展開 導波路形アイソレータ
小型・軽量・低コスト化 半導体レーザとの一体化 サイズ:波長と同程度→薄膜/空気界面、あるいは、薄膜/基板界面の境界条件重要 タイプ: 磁気光学材料導波路形:材料の高品質化重要 リブ形 分岐導波路形
33
光ファイバ増幅器と アイソレータ
34
磁気光学効果の電子論
35
古典電子論
36
電気感受率と誘電率 サイクロトロン角振動数
37
磁界ゼロの場合:ローレンツの式
38
磁界がなく,束縛項もない場合: ドルーデの式
39
磁界がかかっており束縛項がない場合:マグネトプラズマ共鳴とホール効果
0
40
磁界がかかっていて,束縛がなく, 散乱のない場合
41
Feの磁気光学効果は 古典電子論で説明できるか?
比誘電率の非対角成分の大きさ:最大5の程度 , , キャリア密度 と仮定 B=3000Tという非現実的な磁界が必要 スピン軌道相互作用によって初めて説明可能 磁気光学効果の量子論
42
電気分極と摂動論 電気分極とは,「電界によって正負の電荷がずれることにより誘起された電気双極子の単位体積における総和」
「電界の効果」を,電界を与える前の系(無摂動系)のハミルトニアンに対する「摂動」として扱う。 「摂動を受けた場合の波動関数」を「無摂動系の固有関数」の1次結合として展開。この波動関数を用いて「電気双極子の期待値」を計算。
43
時間を含む摂動論(1) 無摂動系の基底状態の波動関数を0(r)で表し, j番目の励起状態の波動関数をj(r) で表す.
無摂動系のシュレーディンガー方程式 H 00(r) =00(r) H 0j(r) = j Ej(r) 光の電界E(t)=E0exp(-it)+c.c. (c.c.=共役複素数) 摂動のハミルトニアン H’=er・E(t) (4.22)
44
時間を含む摂動論(2) 摂動を受けた系のシュレーディンガー方程式 この固有関数を,無摂動系の(時間を含まない)固有関数のセットで展開
(4.23) この固有関数を,無摂動系の(時間を含まない)固有関数のセットで展開 (4.24) この式を式(4.23)に代入し,無摂動系の波動関数について成立する式(4.22)を代入すると
45
時間を含む摂動論(3) 左から*j(r)をかけて,rについて積分すると (4.25) ここで また は無視した また、励起状態間の遷移行列
46
時間を含む摂動論(4) 式(4.25)を積分することにより式(4.24)の展開係数cj(t)が求められる.
(4.26) この係数は,摂動を受けて,励起状態の波動関数が基底状態の波動関数に混じり込んでくる度合いを表している.
47
誘電率の対角成分の導出(1) 電気分極Pの期待値を計算 (入射光の角周波数と同じ成分 ) (4.27) (4.28)
48
誘電率の対角成分の導出(1) 有限の寿命を考える:i の置き換えをする。 (4.31) 振動子強度 誘電率に変換 (4.33)
49
誘電率の非対角成分の導出(1) 非対角成分:y方向の電界がEy(t)が印加されたときの,分極Pのx成分の期待値 および
50
誘電率の非対角成分の導出(2) という置き換えをすると若干の近似のもとで
右および左円偏光により基底状態|0>から,励起状態|j>に遷移する確率 円偏光についての振動子強度
51
磁気光学効果の 量子論 磁化の存在→スピン状態の分裂 スピン軌道相互作用→軌道状態の分裂 右(左)回り光吸収→右(左)回り電子運動誘起
左右円偏光の選択則には影響しない スピン軌道相互作用→軌道状態の分裂 右(左)回り光吸収→右(左)回り電子運動誘起 大きな磁気光学効果の条件 遷移強度の強い許容遷移が存在すること スピン軌道相互作用の大きな元素を含む 磁化には必ずしも比例しない
52
電子分極のミクロな扱い 電界の摂動を受けた 波動関数 E 無摂動系の 波動関数 摂動を受けた 波動関数 s-電子的 p-電子的
+ + - 無摂動系の 波動関数 |2> = + +・・・・ |1> <0|x|1> <1|x|0> + - = + + + ・・ |0> s-電子的 p-電子的 摂動を受けた 波動関数 無摂動系の固有関数で展開
53
円偏光の吸収と電子構造 px-orbital py-orbital p+=px+ipy Lz=+1 p-=px-ipy Lz=0
|2> p+=px+ipy Lz=+1 20- |1> Lz=-1 10- p-=px-ipy 20 10 光の電界 10は20より光エネルギーに近いので左回りの状態の方が右回り状態より多く基底状態に取り込まれる |0> Lz=0 s-like
54
スピン軌道相互作用の重要性 Jz=-3/2 Jz=-1/2 L=1 Jz=+1/2 LZ=+1,0,-1 Jz=+3/2 Jz=-1/2
交換相互作用 +スピン軌道相互作用 磁化なし 交換分裂 LZ=0
55
反磁性型スペクトル ”xy ’xy 励起状態 基底状態 0 1 2 Lz=0 Lz=+1 Lz=-1 1+2 磁化の無いとき
磁化のあるとき Lz=0 Lz=+1 Lz=-1 1+2 光子エネルギー ’xy ”xy
56
誘電率の非対角成分のピーク値 大きな磁気光学効果を持つ条件:
鉄の場合:N=1028m-3, f0=1, so=0.05eV, 0=2eV, /=0.1eVを代入xy”|peak=3.5を得る 大きな磁気光学効果を持つ条件: ・光学遷移の振動子強度 f が大きい ・スピン軌道相互作用が大きい ・遷移のピーク幅が狭い
57
常磁性型スペクトル 光子エネルギー f=f+ - f- 磁化なし 磁化あり ’xy ”xy 誘電率の非対角要素 励起状態 0 f+
基底状態 f+ f- f=f+ - f- 0 磁化なし 磁化あり ’xy ”xy 光子エネルギー 誘電率の非対角要素
58
各種材料の磁気光学効果 酸化物磁性体:磁性ガーネット 金属磁性体:Fe, Co, Ni 金属間化合物・合金:PtMnSbなど
磁性半導体:CdMnTeなど 人工格子:Pt/Co, Fe/Auなど アモルファス:TbFeCo, GdFeCoなど グラニュラー:Al2O3:Coなど
59
Y3Fe5O12の電子準位図 Jz= Jz= J=7/2 3/2 -3/2 6P (6T2, 6T1g) 5/2 7/2 -7/2 -
-3/2 J=3/2 3/2 -3/2 P+ P- P+ P- 6S (6A1, 6A1g) without perturbation spin-orbit interaction 5/2 -5/2 tetrahedral crystal field (Td) octahedral crystal field (Oh)
60
Faraday rotation (arb. unit) Faraday rotation (deg/cm)
Y3Fe5O12のFaraday回転スペクトル experiment calculation wavelength (nm) Faraday rotation (arb. unit) -2 0 +2 Faraday rotation (deg/cm) 0.4 x104 0.8 -0.4
61
Feのカー回転スペクトルの 理論と実験 片山
62
Fe超薄膜の 磁気光学効果 0.73ML 1.1ML 2.01ML 3. 1ML 4. 02ML 4. 93ML 6. 57ML
Photon Energy (eV) Polar Kerr rotation (mdeg/Fe nm) 100 Fe超薄膜の 磁気光学効果
63
PtMnSbの磁気光学スペクトル カー回転と楕円率 誘電率対角成分 誘電率非対角成分 (a) (b) (c)
64
希薄磁性半導体CdMnTe Photon Energy (eV) Faraday Rotation(x10-3 deg/cm) x=0.21
65
アモルファスRT膜の磁気光学効果 Wavelength (nm) Polar Kerr rotation (min)
66
アモルファスRT膜の磁気光学効果 Photon Energy (eV) -0.2 -0.4 -0.6
5 4 3 2 Photon Energy (eV) -0.2 -0.4 -0.6 Polar Kerr rotation (deg) Wavelength (nm) 300 400 500 600 700
67
仮想光学定数の方法 Bilayer Virtual optical constant h Multilayer h1 h2
Complex Kerr rotation Virtual optical constant
68
Fe/Cu人工格子の磁気光学効果 (a) (b) Fe/Cu=0.62 Wavelength (nm)
Polar Kerr rotation (min) Fe-surface Fe-surface Cu-surface Cu-surface (a) (b)
Similar presentations
© 2024 slidesplayer.net Inc.
All rights reserved.