Presentation is loading. Please wait.

Presentation is loading. Please wait.

白鳥座ループのシェルの観測 + Non-thermal SNR G

Similar presentations


Presentation on theme: "白鳥座ループのシェルの観測 + Non-thermal SNR G"— Presentation transcript:

1 白鳥座ループのシェルの観測 + Non-thermal SNR G330. 2+1
白鳥座ループのシェルの観測 + Non-thermal SNR G の観測 Shell Structure of the Cygnus Loop + Non-thermal SNR G 2009/03/13 大阪大学 常深研究室  内田 裕之、常深 博、勝田 哲、木村 公、小杉 寛子 (H. Uchida, H. Tsunemi, S. Katsuda, M. Kimura, H. Kosugi)

2 Outline Cygnus Loop Non-thermal SNR, G330.2+1.0
Southwest “Blowout” Region Abundance Inhomogeneity at the Northern Limb of the Loop Shell Structure along the Line of Sight Non-thermal SNR, G

3 Cygnus Loop Location (l,b) = ( 74.0 ,-8.5 )
Distance pc (Blair et al. 2005) Age ~10,000 yr SN Type Core-collapse (Levenson et al. 1997; Tsunemi et al. 2007) Progenitor Star B0, 15M◎ (Levenson et al. 1998) Cavity Explosion N W ROSAT HRI

4 32 observations 9 observations
Suzaku ROSAT HRI 32 observations 9 observations XMM-Newton Red:  keV Green: Blue:

5 Summed Spectra of Cygnus Loop
Limb North Path South Path C - band C VI N VI O VII O VIII Fe L Ne IX X Mg XI Mg XII Si XIII S XV Suzaku XIS NXB

6 Outline Cygnus Loop Non-thermal SNR, G330.2+1.0
Southwest “Blowout” Region Abundance Inhomogeneity at the Northern Limb of the Loop Shell Structure along the Line of Sight Non-thermal SNR, G

7 Cygnus Loop南西領域の観測 South Blowout

8 Origin of the South “Blowout”
Uyaniker et al. (2002) ― 電波の強度分布から南西に別のSNRの存在を示唆  → ”blowout”の正体 Aschenbach & Leahy (1999) - 南西方向のISM密度の薄さが“破れ”の起源

9 Observation of the South Blowout with XMM-Newton
POS-8 OBS_ID date   2006/05/13 exp. time 10ks POS-9 OBS_ID date /05/13 Exp. time 10ks XMM-Newton image × Center of the “extra SNR” (Uyaniker et al. 2002)

10 さらに5,000 photons / regionになるように円環に区切ってスペクトルを調べた true color image
 観測領域を東西に2分割  さらに5,000 photons / regionになるように円環に区切ってスペクトルを調べた true color image POS-8 POS-9 Red: keV Green: keV Blue: keV

11 Spatially Resolved Spectral Analysis
Two component VNEI model Low kT component (~0.2keV) High kT component (~0.4keV) MOS1 MOS2 R=95’  各スペクトルは2温度の衝突電離非平衡モデル(VNEI)でよく合う

12 Emission Measure Distribution of Fe in the Cygnus Loop Ejecta
Tsunemi et al. Uchida et al. East path West path 2 Tsunemi et al. (2007) EM (1014cm-5) 1 East path Uchida et al. (2008) West path -50 50 Distance from the Cygnus Loop Center (arcmin) 高温成分のFeのEMは中心から外へ向けて減少している Feの分布はCygnusLoop中心を通るTsunemi et al.の結果と滑らかに繋がっている →高温成分はCygnusLoopのイジェクタ起源

13 Spatially Resolved Spectral Analysis
Two component VNEI model Low kT component (~0.2keV) High kT component (~0.4keV) MOS1 MOS2 R=95’  各スペクトルは2温度の衝突電離非平衡モデル(VNEI)でよく合う  低温成分(~0.2keV)はextra SNRからの放射だとすると温度が低すぎる  低温成分はCygnusLoopのシェルからの放射と考えて矛盾はない  2温度フィットの結果から、どの領域でもISM成分の寄与は小さい CygnusLoop南西部のシェルは薄い 

14 Origin of the Southwest “Blowout”
~10,000 yrs later... No evidence in X-ray that the nature of the blowout region originated from the extra SNR

15 Outline Cygnus Loop Non-thermal SNR, G330.2+1.0
Southwest “Blowout” Region Abundance Inhomogeneity at the Northern Limb of the Loop Shell Structure along the Line of Sight Non-thermal SNR, G originated from the large break of the cavity wall

16 Single Component VNEI model
Suzaku Observations of Limb Regions of the Cygnus Loop Katsuda et al. 2008 Tsunemi et al. 2009 Uchida et al. 2009 Ne Abundance XIS0+XIS1+XIS3 Single Component VNEI model ←SNR center C,N,O,Ne等のアバンダンスを調べたところ、一部のリムの外縁部のみがISMの組成に近い

17 外縁部に行くほどアバンダンスが高くなっている領域がある
CygnusLoop center 外縁部に行くほどアバンダンスが高くなっている領域がある

18 Abundance-enhanced Region at the Limb of the Cygnus Loop
typically >0.5solar ~ISM abundance (Katsuda et al. 2008; Tsunemi et al. 2009; Uchida et al. 2009) The other limb regions show depleted abundances; typically <0.2solar (Leahy 2004; Miyata et al. 2007; Katsuda et al. 2008; etc.)

19 The Origin of the Abundance-enhanced Region
Lower Ambient Density Interacting with Cloud (Levenson et al. 2005) (Levenson et al. 2002)

20 The Origin of the Abundance-enhanced Region
The blast waves in the abundance-enhanced are now proceeding into the outside of the cavity wall and begin to interact with the surrounding ISM.

21 Outline Cygnus Loop Non-thermal SNR, G330.2+1.0
Southwest “Blowout” Region Abundance Inhomogeneity at the Northern Limb of the Loop Shell Structure along the Line of Sight Non-thermal SNR, G originated from the large break of the cavity derived from the breakout or the thinness of the cavity

22 low kT component - cavity material origin
RegionB RegionA 低温成分の寄与の違い 視線方向のシェルの厚みを反映 low kT component - cavity material origin high kT component - ejecta origin

23 “Blowout” may exist here along the line of sight
Previous Study (Kimura et al. 2009) Flux Distribution Thin Shell Region Flux (counts cm-2s-1arcmin-2) Distance from center (arcmin) flux of low-kT component flux of high-kT component total flux “Blowout” may exist here along the line of sight

24 949 box regions are obtained
Suzaku: 29 observations XMM: 9 observations ~10,000 counts / region 949 box regions are obtained Each spectrum is fitted by single component VNEI or two component VNEI Flux of each component is calculated 2D Flux Distribution Map

25 0.2-3.0 keV Flux Distributions of Low- and High-kT Component
Rim-brightning V shape structure (Leahy 2004) in unit of counts cm-2s-1arcmin-2 Low-kT component High-kT component

26 0.2-3.0 keV Flux Distributions of Low- and High-kT Component
Low-flux region with radius ~30 arcmin “Blowout” also exists in the middle west along the line of sight Blowout region has the lowest flux in unit of counts cm-2s-1arcmin-2 Low-kT component High-kT component

27 Outline Cygnus Loop Non-thermal SNR, G330.2+1.0
Southwest “Blowout” Region Abundance Inhomogeneity at the Northern Limb of the Loop Shell Structure along the Line of Sight Non-thermal SNR, G originated from the large break of the cavity derived from the breakout or the thinness of the cavity showed that the “blowout” also exists in the direction of our line of sight in the middle west of the Loop

28 Non-thermal SNR G Southwestern Limb Easter Limb Color Image: Chandra ACIS( keV) Contour: MOST(843MHz) Thermal model ~0.7keV Powerlaw Γ~2.3 Powerlaw Γ~2.5 Radio Intensity: High X-ray Intensity: Low Radio Intensity: Low X-ray Intensity: High Non-thermal emission was first detected with ASCA (Torii et al. 2006) Thermal emission are detected at the eastern limb (Park et al. 2008) Anti-correlation between the X-ray and radio intensities

29 Summary Cygnus Loop Non-thermal SNR, G330.2+1.0
Southwest “Blowout” Region Abundance Inhomogeneity at the Northern Limb of the Loop Shell Structure along the Line of Sight Non-thermal SNR, G originated from the large break of the cavity derived from the breakout or the thinness of the cavity showed that the “blowout” also exists in the direction of our line of sight in the middle west of the Loop


Download ppt "白鳥座ループのシェルの観測 + Non-thermal SNR G"

Similar presentations


Ads by Google