Download presentation
Presentation is loading. Please wait.
1
ベル研出張報告 木下 基 稲田 智志
2
エタロンフィルター用半導体レーザーの作成
出張目的 2セクション分割型半導体レーザーの作成 エタロンフィルター用半導体レーザーの作成 これらについて… 設計のためのノウハウを得る 結晶成長&プロセスを行う 共同研究者との親善 語学力向上 観光
3
Map Murray Hill Crawford Hill
4
Crawford Hill 正面玄関 裏山から ホーンリフレクタアンテナ !?
5
埋め込み型半導体レーザーの作成
6
p+-InP p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub) 1.3μmLD 20nm
Grow successive n-InP, n-InGaAsP, p-InP on substrate by MOCVD. p+-InP p+-InGaAs 20nm 酸化防止のため 50nm 金属とのcontactのため p+-InP u-InP 800nm Q1.1 25nm InGaAsP n-InP Q1.3 150nm n-InP(sub) Q1.1 25nm
7
p+-InP p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub)
Remove p+-InGaAs, p+-InP layers with HCl. p+-InP p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub)
8
SiO2(120nm) p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub)
Deposit SiO2. SiO2(120nm) p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub)
9
resist SiO2 p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub)
Spin-coat p-resist. Pre-bake the resist. resist SiO2 p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub)
10
mask resist SiO2 p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub)
Exposure mask resist SiO2 p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub)
11
Develop resist SiO2 p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub)
12
resist SiO2 p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub)
Rinse & post bake resist SiO2 p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub)
13
resist SiO2 p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub)
Remove SiO2 with HF resist SiO2 p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub)
14
SiO2 p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub) Remove resist.
Form SiO2 stripes. SiO2 p+-InGaAs p+-InP u-InP InGaAsP n-InP n-InP(sub)
15
SiO2 p+-InGaAs u-InP p+-InP InGaAsP n-InP n-InP(sub) Deep Etching with
HBr:HCl:HAc:H2O2 SiO2 p+-InGaAs u-InP p+-InP InGaAsP n-InP n-InP(sub)
16
SiO2 p+-InGaAs u-InP p+-InP InGaAsP n-InP n-InP(sub) 実際に再成長させる厚さ
Deep Etching with HBr:HCl:HAc:H2O2 SiO2 p+-InGaAs u-InP p+-InP 実際に再成長させる厚さ InGaAsP n-InP n-InP(sub)
17
SiO2 n-InP p+-InGaAs i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
Regrow iron doped InP and n-InP layor on the wafer. SiO2 n-InP p+-InGaAs i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
18
SiO2 n-InP p+-InGaAs i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
Remove SiO2 with pure HF. SiO2 n-InP p+-InGaAs i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
19
n-InP p+-InGaAs i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
Remove InGaAs with H2SO4:H2O:H2O2. n-InP p+-InGaAs i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
20
ドープするZnの濃度を徐々に増やしていく。
regrow p++-InP layer ドープするZnの濃度を徐々に増やしていく。 n-InP p++-InP(2μm) i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
21
p+-InP p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP
regrow p+-InGaAs and p+-InP layers p+-InP p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
22
resist p+-InP p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP
Paste p-resist. resist p+-InP p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
23
mask resist p+-InP p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP
Exposure mask resist p+-InP p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
24
resist p+-InP p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP
Develop resist p+-InP p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
25
resist p+-InP p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP
Deep etching to make trenches. resist p+-InP p+-InGaAs P-InP層のseparate n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
26
p+-InP p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP
Remove resist. p+-InP p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
27
p+-InP SiO2(540nm) p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP
Deposit SiO2 p+-InP SiO2(540nm) p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
28
resist p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP
Paste p-resist resist p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
29
mask resist p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP
Exposure mask resist p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
30
resist p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP
Develop resist p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
31
resist p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP
Remove SiO2 with HF resist p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
32
resist p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP
Remove InP with HCl. resist p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
33
1st-metal(410nm) resist p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP
Evaporate 1st-metal. 1st-metal(410nm) resist p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
34
1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP
Remove resist (lift-off). 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
35
1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP
Remove resist (lift-off). 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
36
resist 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP
Put n-resist. resist 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
37
mask resist 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP
Exposure resist 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
38
resist 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP
Develop resist 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
39
resist 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP
Develop resist 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
40
2nd-metal(860nm) resist 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP
Evaporate 2nd-metal. 2nd-metal(860nm) resist 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
41
2nd-metal 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP
Remove resist. (Lift-Off) 2nd-metal 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
42
2nd-metal 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP
Lift-Off 2nd-metal 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
43
2nd-metal 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP
Thinning to 200μm 2nd-metal 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
44
2nd-metal 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP
Thinning 2nd-metal 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-InP(sub)
45
2nd-metal 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP
Evaporate n-electrode 2nd-metal 1st-metal p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP metal(560nm) n-InP(sub)
46
p-electrode p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP
完成! p-electrode p+-InP SiO2 p+-InGaAs n-InP p++-InP i-InP u-InP p+-InP InGaAsP n-InP n-InP n-electrode n-InP(sub)
47
LD 900μm 900μm 300μm 300μm
48
QWLD 900μm 900μm 300μm 300μm
49
I-L特性* I-V特性* 発振スペクトル* *いずれもQWLD、300mm
50
2セクション分割型半導体レーザー
51
2セクション分割型半導体レーザーの作成法 Selective Area Growth Butt Joint 再成長
基板上に蒸着されたSiO2膜によって生じる気相密度の偏りとマイグレーション によって、エネルギーギャップの異なる構造を同一基板上に生成する。 この部分に成長する量子井戸は、 他の領域のものよりも厚くなる (エネルギーは低くなる) 損失の小さいジョイントが可能 再成長の手間が省ける エネルギーの制御が困難 Q1.3 Q1.5 Butt Joint 1.5mm用層を成長後光リソグラフィによって選択的にエッチングを行い、 その後、 1.3mm用層を再成長させる。 SAGより確立された手法 ジョイントの損失が大きい Photo Resist & SiO2 p p p Q1.5 再成長 Q1.3 n n Substrate Substrate これらのプロセスには光リソグラフィ用のマスクが不可欠であり、今後それらの設計・作成から行わなければならない。
52
1.3mm帯DHと1.45mm帯QW半導体レーザーを作成した。 (共振器長300~1100mmのレーザーを計250個程入手)
達成状況 1.3mm帯DHと1.45mm帯QW半導体レーザーを作成した。 (共振器長300~1100mmのレーザーを計250個程入手) 透過測定による位相変調性の評価 HRコーディングを施し、エタロンフィルタとして使用 今後 2セクション分割型半導体レーザーの作成方法についてディスカッションを行った。 プロセス用のマスクの設計と作成 →素子を作成する。 今後 高速広域変調デバイス(Coupled QW)に関するディスカッションを行った。 今後 理論の理解とデバイスの設計
Similar presentations
© 2024 slidesplayer.net Inc.
All rights reserved.