Download presentation
Presentation is loading. Please wait.
1
References and Discussion
Toshiyuki Ihara
2
References 1Akiyama et. al. , Solid State Communications 122 (2002) 169 1D doped T-Wire / density dependence of PL / X,X-,plasma emission / PL weak FES 2Takagiwa et. al. , JPCS 63 (2002) 1587 Theory : 2DEG / density dependence of FES in absorption spectra / X,X-,Continuum 3Laruelle, PRB, 65 (2002) 1D doped LSL / PL at high density / strong FES by Fano resonance 4Laruelle, PRB, 65 (2002) 1D doped LSL / PL and PLE at high density / Moss-Burstein shift / no 1D features 5Kapon, Physica E, 11 (2001) 224 1D doped V-groove / PL, PLE at high density / PL FES (?) / PLE weak FES (?) 6Kaur, phys. Stat. sol. A 178,465 (2000) 2D doped 10nm well / density dependence of PL, PLE / X,X-,continuum / FES 7Yusa, PRB (2000) 2D doped 20nm well / density dependence of PL,photocurrent / X,X- / FES of X 8V. Huard, PRL 84 (1999) 187 2D CdTe doped 10nm well / density dependence of absorption / X,X- / w2-w1=EF+Eb 9Kim, Physica E7 517 (2000) 1D doped v-groove / PL / FES at n=2 10Brown, PRB 54 (1996) R11082 2D doped 5nm well / density dependence of absorption / X,X- but hard to resolve 11Finkelstein, PRL 74 (1995) 976 2D doped 20nm well / density dependence of PL,PLE / X,X-,plasma 12Sekiyama, PRB 51 (1995) 13899 Cu salt / PL / Fermi-liquid or Luttinver-liquid 13G.D Mahan, Phys. Rev. 153 (1967) 882 Theory : 3D Metal / x-ray absorption / power-law divergent in absorption spectra 14Hawrylak, Phys. Rev. B44 (1991) 3821 Theory : 2D electron system / emission, absorption / X, X- / power-law divergent 15Nozieres et al. Phys. Rev. 178 (1969) 1097 Theory : 3D metal / x-ray absorption / reduced FES by Anderson infrared catastrophe 16Combescot, J. Phys. (Paris) 32 (1971) 1097 Theory : 2D electron system / absorption of X, continuum / power-law divergent
3
Reference Akiyama et. al. , Solid State Communications 122 (2002) 169
Takagiwa et. al. , JPCS 63 (2002) 1587
4
Reference Laruelle, PRB, 65 (2002) 195303
5
Reference Kapon, Physica E, 11 (2001) 224
6
Reference Kaur, phys. Stat. sol. A 178,465 (2000)
7
Reference Yusa, PRB (2000) V. Huard, PRL 84 (1999) 187
8
Reference Kim, Physica E7 517 (2000) Brown, PRB 54 (1996) R11082
9
Reference Finkelstein, PRL 74 (1995) 976
10
Reference Sekiyama, PRB 51 (1995) 13899
11
Reference Hawrylak, Phys. Rev. B44 (1991) 3821
12
abstract 高品質n型ドープ単一T型量子細線 ゲート電圧で電子濃度を変えられる
PL・PLE測定の電子濃度依存性 同サンプルで2次元電子系のPL・PLE測定もできる 1次元電子系でのFESの特異な変化(フェルミエッジでw1吸収(trion)が消え、弱いw2らしき吸収(exciton?)が残る) ←原因の候補:FESの消滅(1D電子系でフェルミエッジがない)、偏光依存性(ある意味1Dの特徴)など 1Dの方がexciton・trionの減衰が早い・2Dではw1,w2のFESが高電子濃度でも残る。 Trionの吸収ピークが非対称、高エネルギー側のテールがFESのべき発散に対応している。 Trionのbinding energyが1Dの方が大きい 2meV / 1.5meV We measured PL and PLE spectra in an n-type doped T-shaped quantum wire (T-wire) of superior quality, where the electron density (n1D) is tuned by applying gate voltage. We found interesting differences between one-dimensional (1D) and 2D electron systems by comparing the spectral features of 1D quantum wire with that of 2D quantum well which is measured in the same T-wire sample. In the 2D well, we observed the smooth evolution from the trion peak at low n2D to fermi-edge singularity (FES) at high n2D, which is analogous to results reported for 2D well by other groups. In the 1D wire, we observed strong FES of trion peak which disappears at high n1D. In addition, we found rapid decay of exciton peak with n1D, large trion binding energy in the 1D wire, that might be the characteristic features in 1D system.
13
Figure
14
Figure
15
Discussion
Similar presentations
© 2024 slidesplayer.net Inc.
All rights reserved.