Hyperglycemia Promotes Myelopoiesis and Impairs the Resolution of Atherosclerosis Cell Metabolism, 17, 695-708,May 7, 2013 高血糖は骨髄造血を促進しアテローム性動脈硬化症の回復に障害をきた.

Slides:



Advertisements
Similar presentations
Localized hole on Carbon acceptors in an n-type doped quantum wire. Toshiyuki Ihara ’05 11/29 For Akiyama Group members 11/29 this second version (latest)
Advertisements

第 5 章 2 次元モデル Chapter 5 2-dimensional model. Contents 1.2 次元モデル 2-dimensional model 2. 弱形式 Weak form 3.FEM 近似 FEM approximation 4. まとめ Summary.
Essay writing rules for Japanese!!. * First ・ There are two directions you can write. ・よこがき / 横書き (same as we write English) ・たてがき / 縦書き (from right to.
血液・免疫学ユニット 第2回 免疫担当細胞の種類と機能.
小水力班/ Small Hydro Generation Group 研究背景 / Research background
いくつか食欲制御ホルモン.
Journal Club 2016年1月28日 8:30-8:55 8階 医局 埼玉医科大学 総合医療センター 内分泌・糖尿病内科
英語勉強会.
STEP 2 ノート・テイキングのサンプル.
THE CONTINUOUS IMPROVEMENT MODEL called ADEC
Chapter 11 Queues 行列.
CSWパラレルイベント報告 ヒューマンライツ・ナウ        後藤 弘子.
The Unfolded Protein Response Mediates Adaptation to Exercise in Skeletal Muscle through a PGC-1α/ATF6α Complex Cell Metabolism , Vol 13, , 2011.
Journal of Investigative Dermatology, 13 June 2013 Prolonged Activation of ERK Contributes to the Photorejuvenation Effect in Photodynamic Therapy in Human.
熱中性子ラジオグラフィ用-新規LiFシンチレータ、
Chris Burgess (1号館1308研究室、内線164)
▷Ⅶ型コラーゲン欠損型では、接着能・オートファジー溶解能が低下した
Hyperglycemia Promotes Myelopoiesis
Targeting of Receptor for Advanced Glycation End Products Suppresses Cyst Growth in Polycystic Kidney Disease The Journal of Biological Chemistry, 2014,
Targeted Temperature Management at 33℃ versus 36℃ after Cardiac Arrest
第2回栄養セミナー 川崎医科大学 糖尿病内分泌内科 衛藤 雅昭 生活習慣病(肥満,糖尿病,高脂血症)の 食事療法
大部分の細胞はグルコースを燃料として使用する。グルコースは解糖系によって多段階からなる一連の反応で代謝され、結果的にピルビン酸を生成する。典型的な細胞では、このピルビン酸の多くはミトコンドリアに入り、そこでクレブス回路によって酸化されてATPを産生し、細胞のエネルギー需要に応えている。しかし、癌細胞や他の高度に分裂している細胞においては、解糖系から供給されるこのピルビン酸の多くは、ミトコンドリアとは離れて、乳酸脱水素酵素.
Chapter 6 Jade 翡翠(ヒスイ).
Tohoku University Kyo Tsukada
抗体研究・抗体製剤開発の歴史 Ref 3/Prull 2003/pg334/para2
Week 7: Diabetes and Endocrine Ken Yang
著者:外岡秀行 著者:外岡秀行 著者:新井康平 著者:新井康平 著者:新井康平 著者:新井康平.
Group meeting 2016/5/13 Katsuhiro Umeda.
Chapter 4 Quiz #2 Verbs Particles を、に、で
The Sacred Deer of 奈良(なら)
Possible Damping Ring Timing
Laser-assisted Thermal-expansion Microinjector
YMC Pro Series of ODS Columns
VTA 02 What do you do on a weekend? しゅうまつ、何をしますか。
論文はざっと見る。最初から細かく読まない!
個体と多様性の 生物学 第6回 体を守る免疫機構Ⅰ 和田 勝 東京医科歯科大学教養部.
喫煙者は糖尿病に なりやすい!! 保険者機能を推進する会 たばこ対策研究会 003_サードハンドスモーク(3).pptx.
ストップウォッチの カード ストップウォッチの カード
樹状細胞療法 長崎大学輸血部 長井一浩.
モノクローナル抗体製剤の進歩 免疫原性 完全マウス型抗体 1st 世代 キメラ型抗体 2nd 世代 ヒト化抗体 3rd 世代 完全ヒト型抗体
Lesion Frequency Course
WLTC Mode Construction
Effective methods for multiplying hypericum oliganthum
2004 WFDSA Direct Seller Survey Research Deck Taiwan
Traits 形質.
Eriko Fukuyama, MD Fukuyama Eye Clinic Fukuoka, Japan
高脂血症.
My Favorite Movie I will introduce my favorite movie.
My Favorite Japanese Rock
生命科学基礎C 第8回 免疫Ⅰ 和田 勝 東京医科歯科大学教養部.
G. Hanson et al. Phys. Rev. Lett. 35 (1975) 1609
クイズやゲーム形式で紹介した実例です。いずれも過去のインターン作です。
DS4000 EXP700 ESM ファームウエア更新手順 (ファームウエアレベル 9326)
個体と多様性の 生物学 第6回 体を守る免疫機構Ⅰ 和田 勝 東京医科歯科大学教養部.
2019/4/22 Warm-up ※Warm-up 1~3には、小学校外国語活動「アルファベットを探そう」(H26年度、神埼小学校におけるSTの授業実践)で、5年生が撮影した写真を使用しています(授業者より使用許諾済)。
北大MMCセミナー 第62回 附属社会創造数学センター主催 Date: 2016年11月4日(金) 16:30~18:00
どのような特徴を見ているのか ― 計算の目的
ー生命倫理の授業を通して生徒の意識に何が生じたかー
内分泌系 内分泌学Endocrinology.
MO装置開発 Core part of RTR-MOI Photograph of core part.
JEFFREY WITZEL (University of Texas at Arlington, USA)
Measurements of J/ψ with PHENIX Muon Arms in 2003 p+p Collisions
Kis-My-Ft2.
Apply sound transmission to soundproofing
医学英語 III 6/11.
アノテーションガイドラインの管理を行う アノテーションシステムの提案
Pre-NK細胞 NK細胞 Pre-T細胞 Pro-T細胞 T細胞 形質細胞 Pro-B細胞 Pre-B細胞 B細胞 リンパ球系
AZD6738 exerts antitumor effects in a SNU-601 xenograft mouse model.
Imatinib mesylate (IM) in combination of F-AMP significantly inhibits Ki67 and c-KIT expression in GIST-T1 tumor xenografts. Imatinib mesylate (IM) in.
Percutaneous carbon dioxide treatment with gas mist generator enhances collateral blood flow in the ischemic hindlimb Takanori Yamazaki1), Yasukatsu Izumi2),
Presentation transcript:

Hyperglycemia Promotes Myelopoiesis and Impairs the Resolution of Atherosclerosis Cell Metabolism, 17, ,May 7, 2013 高血糖は骨髄造血を促進しアテローム性動脈硬化症の回復に障害をきた す 2015/11/30 M1 瀧井靖歩 糖尿病はアテローム性動脈硬化症の主なリスクファクターであり、糖尿病患者において血中の白血球が 増加していることや、白血球の増加が動脈硬化巣(プラーク)拡大に関わっていることが知られている。 しかしながら、糖尿病が白血球の増加を引き起こす詳しいメカニズムは明らかとなっていない。 また、動脈硬化症患者においては血中コレステロール値を下げることでプラークが縮小するが、糖尿病 を発症している場合においてはコレステロールコントロール時にもプラークの退縮が抑制されることが示 されている。そして、プラークの退縮抑制に糖尿病が影響を与えるメカニズムについても詳細は明らかと なっていない。 そこで本論文では、①糖尿病における白血球の増加メカニズムを解明すること、②糖尿病とアテローム 性動脈硬化症の関係を、プラークの退縮に着目して評価すること、③マウスを用いた動物実験の結果がヒ トでも同様か確かめること、を目的とした。 【背景と目的】 Prabhakara R. Nagareddy, Andrew J. Murphy, Roslynn A. Stirzaker, Yunying Hu, Shiquing Yu, Rachel G. Miller, Bhama Ramkhelawon, Emilie Distel, Marit Westerterp, Li-Shin Huang, Ann Marie Schmidt, Trevor J. Orchard, Edward A. Fisher, Alan R. Tall6, Ira J. Goldberg ( R&D Systems HP より一部改 変) HSPC: 造血幹細胞 CMP: 骨髄系前駆細胞 GMP: 顆粒球/マクロ ファージ前駆細 胞 単球 好中球マクロファー ジ 好塩基球 好酸球 骨髄芽球 単球由来 樹状細胞 リンパ球系前駆細 胞 樹状細胞 赤芽球系前駆細胞 赤血球 巨核球 血小板 【血球の分化】

Leukocytosis Develops in Response to Hyperglycemia via Expansion and Proliferation of BM Progenitor Cells (A and B) Chow-fed, nondiabetic WT (C57BL/6), STZ-diabetic, and Akita diabetic mice were treated with SGLT2i (5 mg/kg; ISIS Pharmaceuticals) in drinking water for 4 weeks. Representative flow cytometry plots of blood leukocyte subsets from STZ-diabetic (A) and Akita diabetic (B) mice. (C and D) Quantification of monocyte subsets and neutrophils in STZ-diabetic (C) and Akita diabetic (D) mice. (E–H) HSPC, CMP, and GMP analysis in the BM. The percentage of the respective populations in STZ-diabetic (E) and Akita diabetic (F) mice, and cell-cycle (G2/M phase) analysis in STZ-diabetic (G) and Akita diabetic (H) mice was performed by flow cytometry. For all experiments, n = 10–12/group. * p < 0.05 versus all groups, and ˆp < 0.05 versus WT + STZ or Akita. All values are means ± SEM. Neutrophil-Derived S100A8/S100A9 Promotes Leukocytosis via Increased Proliferation of BM Progenitor Cells (A) Plasma levels of S100A8/S100A9 in STZ-diabetic mice treated with SGLT2i. n = 6. (B) mRNA expression of S100a8, S100a9, and Hmgb1 in FACS-isolated neutrophils. n = 6; * p < 0.05 versus WT, ˆp < 0.05 versus WT + STZ group. (C) Total BM cells were isolated from WT mice and cultured in HG (25 mM, 16 hr) and stimulated with S100A8/S100A9 complex. GMP proliferation was assessed by measuring EdU incorporation via flow cytometry. n = four independent experiments; * p < 0.05 versus vehicle. (D and E) Graphs of monocyte levels (D) and BM progenitor cells (E) in WT mice in response to vehicle or S100A8/S100A9 complex (20 μg/kg/mouse i.v., twice daily for 3 days). n = 5/group; * p < 0.05 versus vehicle. 高血糖によって骨髄造血が促進した。

(F–I) S100a9 −/− BMT study including experimental overview (WT mice were transplanted with BM from either WT or S100a9 −/− mice and made diabetic with STZ) (F), blood leukocyte levels after 4 weeks of diabetes (G), and percentages of HSPCs, CMPs, and GMPs in the BM (H), or the G2/M phase of the cell cycle (I). n = 5/group. * p < 0.05 versus all groups. All values are means ± SEM. RAGE on Myeloid Progenitor Cells Mediates S100A8/S100A9- Stimulated Leukocytosis in Diabetic Mice (A) GMP proliferation in response to S100A8/S100A9 (2 μg/ml) as measured by EdU incorporation. n = four independent experiments. * p < 0.05 versus vehicle in each genotype. (B) Blood leukocyte levels in WT and Rage −/− mice with and without STZ diabetes. n = 5 or 6/group. * p < 0.05 versus all groups. (C) Surface expression of RAGE on CMPs (histogram and quantification) in WT and STZ-diabetic mice treated with SGLT2i. n = 6; * p < 0.05 versus all groups, * p < 0.05 versus WT + STZ. (D) Experimental overview: WT mice were transplanted with BM from WT or Rage −/− mice and made diabetic with STZ. (E–G) After 4 weeks of diabetes, blood leukocytes (E), BM HSPC, CMP, GMP numbers (F), and proliferation (G) were measured by flow cytometry. n = 5/group; * p < 0.05 versus all groups. (H–K) Competitive BMT study including experimental overview (equally mixed portions of CD45.1 and CD45.2 BM from the respective genotypes were transplanted into WT CD45.2 recipients and made diabetic with STZ (H), numbers of CD45.1 and CD45.2 monocytes and neutrophils from the respective donor 糖尿病発症時には、 S100A8/A9 が骨髄造血を促進する。 S100A8/A9 は RAGE-NF-κB 経路を介してサイトカイン産生を誘導し、骨髄造血を促進する。

BM (I), percentages of CD45.1 and CD45.2 CMPs and GMPs (J), and percentages of CD45.1 and CD45.2 CMPs and GMPs in the cell cycle from each respective donor BM (K). Data are means ± SEM; n = 5 or 6/group. Numbers in parentheses indicate ratio of CD45.1:CD45.2. * p < 0.05 versus w/w. (L) Scheme summarizing the cell-extrinsic proliferative pathway induced by S100A8/S100A9-RAGE signaling. (M) GMP proliferation in response to S100A8/S100A9 ± the NF-κB inhibitor (SN50, 20 μM). (N) mRNA of M-CSF, GM-CSF, and G-CSF as quantified by quantitative RT-PCR (qRT-PCR). n = 4 independent experiments. * p < 0.05 versus all groups, ˆp < 0.05 versus HG. (O) GMP proliferation in response to S100A8/S100A9 ± neutralizing antibodies to M-CSF and/or GM-CSF or isotype controls (ISO) (all 30 μg/ml). n = four independent experiments. * p < 0.05 versus ISO vehicle, ˆp < 0.05 versus respective ISO control. All values are means ± SEM. Neutrophils Drive Hyperglycemia- Mediated Leukocytosis in Diabetes (A–F) Neutrophils in WT and STZ- diabetic mice were depleted by injecting anti-Ly6G antibody (clone 1A8, 1 mg/mouse by i.p. injection) every 3 days for 3 weeks. Neutrophil (A) and monocyte (B) levels in WT and STZ mice treated with anti-Ly6-G or an isotype control, plasma levels of S100A8/S100A9 (C), CMP and GMP cell populations in the BM (D), CMP and GMP cell proliferation assessed by DAPI staining and represented as percentage of cells in the G2/M phase of the cell cycle (E), and surface expression of RAGE on CMPs (F). For all experiments, n = 5/group. * p < 0.05 indicated diabetes effect, ˆp < 0.05 indicated anti-Ly6G effect. All values are means ± SEM. Defective Lesion Regression in Diabetic Mice Is Improved by Normalizing Plasma Glucose (A) Experimental overview: Ldlr −/− mice were fed a HCD (0.15%) for 16 weeks to develop atherosclerotic lesions. At this time point, a group of mice was sacrificed to determine baseline (preregression) lesion characteristics. The remaining mice were divided into three groups (Reg, Reg + STZ, and Reg + STZ + SGLT2i) and placed on chow diet for 6 weeks (n = 10 or 11/group). (B) Blood glucose and total cholesterol levels at baseline and after 6 weeks of regression. * p < 0.05 versus all groups. (C) Blood leukocyte levels at baseline and after 6 weeks of regression as assessed by flow cytometry. n = 9–11/group. * p < 0.05 versus all groups, ˆp < 0.05 versus Reg + STZ. (D) Quantification of mean lesion areas. (E) Representative oil red O-stained lesions and quantification of oil red O stain as percent of lesion area. (F) Representative CD68 + -stained lesions and quantification as CD68 + area/lesion. * p < 0.05 versus Reg and Reg + STZ + SGLT2i, ˆp < 0.05 versus Reg + STZ. 好中球が産生する S100A8/A9 が骨髄造血を誘導している。

(G) Ly6-C hi monocyte adhesion assay. FACS-isolated Ly6-C hi blood monocytes were labeled with cell tracker green, and equal numbers of monocytes were allowed to adhere to cultured human aortic endothelial cells (HAECs) under static conditions. * p < 0.05 versus all groups; ˆp < 0.05 versus Reg + STZ. (H) Activation status of monocytes as measured by MFI of CD11b. (I) Migration index for Ly6-C hi monocytes (FACS sorted) as determined by their rate and ability to migrate toward CCL2 (in a transwell chamber). * p < 0.05 versus all groups; ˆp < 0.05 versus Reg + STZ; n = 4/group. (J) Representative images and quantification of lesions stained with Ly6-C antibody (FITC; green) and Hoechst dye (blue; nuclei) using confocal microscopy. Arrows indicate Ly6-C + cells (Ly6-C hi monocytes). Data are means ± SEM; n = 10/group. * p < 0.05 versus all groups; ˆp < 0.05 versus REG + STZ. Impaired Lesion Regression in Diabetic Mice Is Due to Increased Monocyte Recruitment (A) Ldlr −/− mice were fed a HCD for 16 weeks to develop atherosclerotic lesions. Aortic transplantation model overview: all donor Ldlr −/− mice were injected with EdU (1 mg i.v.) to label newly formed monocytes. At 48 hr postinjection, aortas were dissected from these mice and either processed for baseline measurement of EdU + cells or transplanted into chow-fed Akita mice ± SGLT2i. At 48 hr prior to termination, mice were injected with green fluorescent microspheres to determine monocyte entry. (B) Monocyte entry determined by fluorescent beads. (C) Monocyte egress: representative images showing EdU stain (red) in the aortic arch sections of donor mice (baseline) and grafts from Akita and Akita + SGLT2i. (D) Quantification of monocyte egress as represented by the number of EdU + cells per section. * p < 0.05 versus baseline, n = 5/group. (E) Diet-induced regression model overview: Ldlr −/− mice fed with a HCD for 16 week were divided into three groups (Reg, Reg + STZ, and Reg + STZ + SGLT2i) and placed on chow diet. At the end of 4 weeks, all mice were injected (i.v.) with clodronate liposomes (CLO, 250 μl) 血糖値の低下は、動脈硬化巣の退縮、単球/マクロファージの浸潤の改善を促進した。

to deplete the circulating monocytes. They were injected with green fluorescent microspheres 48 hr later; 4 days later, a portion of mice from each group was sacrificed to determine the baseline measurement of beads in the atheroma and to assess Ly6-C hi monocyte entry. A second group of mice was assessed 14 days later (6 weeks of regression) for quantification of labeled macrophages remaining in plaques. At 48 hr prior to sacrificing the final group of mice, they were injected with EdU to assess Ly6-C hi monocyte entry. (F) Ly6-C hi monocyte entry as determined by EdU + cells in the lesion. (G) Ly6-C hi monocyte entry and monocyte and macrophage retention in the lesion as assessed by number of beads/section. (H) Percentage of macrophage egress compared to baseline. * p < 0.05 versus all groups, ˆp < 0.05 final versus baseline; n = 6/group. All values are means ± SEM. S100A8/S100A9 Correlates with Leukocytes in T1DM Patients with CAD and Stimulates Myelopoiesis in Human CD34+ Progenitor Cells (A) Leukocyte and S100A8/S100A9 levels in T1DM patients with and without CAD. (B and C) Regression analysis: S100A8/S100A9 versus WBCs (B) and S100A8/S100A9 versus neutrophils (C). n = 49. (D) Proliferation of CD34 + progenitor cells to increasing doses of S100A8/S100A9 was measured by EdU incorporation. n = four independent experiments; data are means ± SEM; * p < 0.05 versus control. (E) Production of CD14 + monocytes from CD34 + progenitor cells to increasing doses of S100A8/S100A9. n = four independent experiments; data are means ± SEM; * p < 0.05 versus control. 【まとめ】 高血糖が白血球の増加に 与える影響について左図 のメカニズムが示された。 また、ヒトでも同様のメ カニズムが働いているこ とが示唆された。 S100A8/A9-RAGE 経路は 動脈硬化治療の新たな ターゲットとなり得る。 ↓ 高血糖状態では持続的に単球のリクルートが促進している。 ヒトにおいても、白血球数や好中球数は S100A8/A9 濃度や冠動脈疾患の発症、骨髄造血 に関わっている。