材料系物理工学03.11.06 第5回弱い磁性も使いよう 佐藤勝昭.

Slides:



Advertisements
Similar presentations
無機化学 I 後期 木曜日 2 限目 10 時半〜 12 時 化学専攻 固体物性化学分科 北川 宏 301 号室.
Advertisements

物理システム工学科3年次 物性工学概論 第火曜1限0031教室 第13回 スピンエレクトロニクスと材料[2] 磁性の起源・磁気記録
〜 ESR で測れば過激分子(ラジカル)がわかる 〜
生体分子解析学 2017/3/2 2017/3/2 機器分析 分光学 X線結晶構造解析 質量分析 熱分析 その他機器分析.
大学院物理システム工学専攻2004年度 固体材料物性第3回
講師:佐藤勝昭 (東京農工大学工学部教授)
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
第2回応用物理学科セミナー 日時: 6月 2日(月) 16:00 – 17:00 場所:葛飾キャンパス研究棟8F第2セミナー室
単一分子接合の電子輸送特性の実験的検証 東京工業大学 理工学研究科  化学専攻 木口学.
W e l c o m ! いい天気♪ W e l c o m ! 腹減った・・・ 暑い~ 夏だね Hey~!! 暇だ。 急げ~!!
各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、MIセンサ、FGセンサ等
小笠原智博A*、宮永崇史A、岡崎禎子A、 匂坂康男A、永松伸一B、藤川高志B 弘前大学理工学部A 千葉大大学院自然B
CRL 高周波磁界検出用MOインディケーターの合成と評価 1. Introduction 3. Results and Discussion
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛
COMPASS実験の紹介 〜回転の起源は?〜 山形大学 堂下典弘 1996年 COMPASS実験グループを立ち上げ 1997年 実験承認
電子物性第1 第6回 ー原子の結合と結晶ー 電子物性第1スライド6-1 目次 2 はじめに 3 原子の結合と分子 4 イオン結合
Irradiated Polarized Target
TTF骨格を配位子に用いた 分子性磁性体の開発 分子科学研究所 西條 純一.
空孔の生成 反対の電荷を持つイオンとの安定な結合を切る必要がある 欠陥の生成はエンタルピーを増大させる
Ⅰ 孤立イオンの磁気的性質 1.電子の磁気モーメント 2.イオン(原子)の磁気モーメント 反磁性磁化率、Hund結合、スピン・軌道相互作用
Ⅲ 結晶中の磁性イオン 1.結晶場によるエネルギー準位の分裂 2.スピン・ハミルトニアン
核磁気共鳴法とその固体物理学への応用 東大物性研: 瀧川 仁 [Ⅰ] 磁気共鳴の原理と超微細相互作用、緩和現象
Ⅳ 交換相互作用 1.モット絶縁体、ハバード・モデル 2.交換相互作用 3.共有結合性(covalency)
前回の内容 結晶工学特論 第5回目 Braggの式とLaue関数 実格子と逆格子 回折(結晶による波の散乱) Ewald球
大学院理工学研究科 2004年度 物性物理学特論第7回 -磁気光学効果の電子論(3):バンド理論-
大学院物理システム工学専攻2004年度 固体材料物性第4回
臨床診断総論 画像診断(3) 磁気共鳴画像 Magnetic Resonance Imaging: MRI その2
材料系物理工学 第3回 鉄はなぜ磁気をおびる?
佐藤勝昭 東京農工大学 工学部物理システム工学科
Dissociative Recombination of HeH+ at Large Center-of-Mass Energies
原子核物理学 第8講 核力.
HERMES実験における偏極水素気体標的の制御
et1 et1 et2 et2 信号 T2減衰曲線 Mxy(t) = M0 e-t/T2 T2*減衰曲線
大学院物理システム工学専攻2004年度 固体材料物性第2回
g-2 実験 量子電磁力学の精密テスト と 標準理論のかなた
Fig. Crystal structure of Nd2Fe14B
大学院物理システム工学専攻2004年度 固体材料物性第7回 -光と磁気の現象論(2)-
Ⅱ 磁気共鳴の基礎 1.磁場中での磁気モーメントの運動 2.磁気共鳴、スピンエコー 3.超微細相互作用、内部磁場 references:
Ⅴ 古典スピン系の秩序状態と分子場理論 1.古典スピン系の秩序状態 2.ハイゼンベルグ・モデルの分子場理論 3.異方的交換相互作用.
22章以降 化学反応の速度 本章 ◎ 反応速度の定義とその測定方法の概観 ◎ 測定結果 ⇒ 反応速度は速度式という微分方程式で表現
量子力学の復習(水素原子の波動関数) 光の吸収と放出(ラビ振動)
光電効果と光量子仮説  泊口万里子.
物理システム工学科3年次 「物性工学概論」 第1回講義 火曜1限67番教室
Appendix. 【磁性の基礎】 (1)磁性の分類[:表3参照]
物性物理学で対象となる 強相関フェルミ粒子系とボーズ粒子系
半導体の歴史的経緯 1833年 ファラデー AgSの負の抵抗温度係数の発見
電子物性第1 第11回 ー金属の電気的性質ー 電子物性第1スライド11-1 目次 2 はじめに 3 導電率(電子バス) 4 欠陥の多い結晶
臨床診断総論 画像診断(3) 磁気共鳴画像 Magnetic Resonance Imaging: MRI その3
星間物理学 講義2: 星間空間の物理状態 星間空間のガスの典型的パラメータ どうしてそうなっているのか
回転超流動3Heの基礎研究 講演題目 片岡 祐己 久保田 研究室 ~バルク及び平行平板間制限空間中の3He~
課題演習B1 「相転移」 相転移とは? 相転移の例 担当 不規則系物理学研究室 松田和博 (准教授) 永谷清信 (助教)
アセチリド錯体を構成要素とする 分子性磁性体の構築と その構造及び磁気特性の評価
Why Rotation ? Why 3He ? l ^ d Half-Quantum Vortex ( Alice vortex ) n
学年   名列    名前 物理化学 第1章5 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
課題演習B1 「相転移」 相転移とは? 相転移の例 担当 不規則系物理学研究室 八尾 誠 (教授) 松田和博 (准教授) 永谷清信 (助教)
学年   名列    名前 物理化学 第1章5 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
メスバウアー効果で探る鉄水酸化物の結晶粒の大きさ
振動分光・電気インピーダンス 基礎セミナー 神戸大学大学院農学研究科 農産食品プロセス工学教育研究分野 豊田淨彦.
課題研究 P4 原子核とハドロンの物理 (理論)延與 佳子 原子核理論研究室 5号館514号室(x3857)
原子核物理学 第6講 原子核の殻構造.
工学系大学院単位互換e-ラーニング科目 磁気光学入門第7回 -磁気光学効果の電子論(2):量子論-
課題演習B1 「相転移」 相転移とは? 相転移の例 担当 不規則系物理学研究室 松田和博 (准教授) 永谷清信 (助教)
電子物性第1 第10回 ー格子振動と熱ー 電子物性第1スライド10-1 目次 2 はじめに 3 格子の変位 4 原子間の復元力 5 振動の波
化学1 第11回講義 ・吸光度、ランベルト-ベールの法則 ・振動スペクトル ・核磁気共鳴スペクトル.
セラミックス 第3回目 4月 30日(水)  担当教員:永山 勝久.
講師:佐藤勝昭 (東京農工大学大学院教授)
生体分子解析学 機器分析 分光学 X線結晶構造解析 質量分析 熱分析 その他機器分析.
第20回応用物理学科セミナー 日時: 2月25日(木) 16:10 – 17:40 場所:葛飾キャンパス研究棟8階第2セミナー室
複合アニオンに起因した多軌道性と低次元性からうまれる 強相関電子物性の研究
Presentation transcript:

材料系物理工学03.11.06 第5回弱い磁性も使いよう 佐藤勝昭

復習コーナー(第4回の問題) 磁性体において初磁化状態で磁化が0である理由と、磁場により飽和する理由を述べよ。 初磁化状態で磁化がないのは、静磁エネルギーを下げるため全体がさまざまな方向の磁化をもつ磁区に分かれ、全体の磁化が打ち消されているからである。(正解者:二村、山根、湯舟、堀越、石田、藤井宏、藤原、小山、山本) 磁界を印加すると、磁壁移動が起きて、磁界と平行な磁化をもつ磁区が広がる。ある程度磁壁移動が進むと、磁化回転が起きて、全体が単磁区になり、これ以上磁化は増大しない。これが飽和である。(正解者:二村、湯舟、石田、藤原、小山、山本)

まちがった回答・不十分な回答 初磁化状態で磁化が0である理由 飽和する理由 磁化と逆向きの反磁界が生じているため(A,O,N,T):反磁界による静磁エネルギーを下げるために磁区に分かれていると書いて欲しかった 試料内部の反磁界が打ち消し合っている(Y4):磁区に分かれてという説明が必要 飽和する理由 N極からS極に向かって磁力線を生じるから(S):これは磁区が生じる理由 反磁界で打ち消しあって飽和する(Y1) 反磁界が消え安定する(A):反磁界は消えないが外部磁界がこれに打ち勝つため磁区に分かれない 物事にはなんでも限界があるから(Y2):間違いではないが非科学的 磁性体が有限の粒子でできているから(Y3)

本日の学習 弱い磁性 常磁性 ランジェバンの常磁性 パウリの常磁性 バンブレックの常磁性 反磁性 ランダウの反磁性

常磁性の説明 常磁性というのは英語のparamagnetismの和訳*である。 ランジェバンの常磁性 磁界を加えないと、原子磁気モーメントはバラバラな向きを向いているが、磁界を加えると、磁気モーメントの向きが磁界に平行(parallel)になろうとして回転し、全体として正味の磁化を生じる現象である。 パウリの常磁性 スピン常磁性は、非磁性金属において↑スピンのバンドと↓スピンバンドが分裂することによって生じる磁性で、フェルミ縮退のある系では磁化率の温度変化がほとんどないような常磁性を示す。 *磁界を加えて初めて磁化が生じるので、この和訳はmisleading

ランジェバンの常磁性 (佐藤・越田:応用電子物性工学) 強磁界、低温では常磁性 磁化は飽和する (中村伝:磁性より) 戻る 常磁性塩の磁気モーメント のH/T依存性 (Henry:PR 88 (’52) 559) キュリーの法則=C/Tの例 CuSO4K2SO46H2O 強磁界、低温では常磁性 磁化は飽和する (中村伝:磁性より) Brillouin関数: 戻る

ランジェバンの常磁性 (佐藤・越田:応用電子物性工学)

参考 ブリルアン関数に従う常磁性磁化曲線 常磁性塩の磁気モーメントのH/T依存性(Henry:PR 88 (’52) 559) 強磁界、低温では常磁性磁化は飽和する

低温で常磁性体は磁石にくっつく <液体酸素の常磁性> N S S N 東大 小島憲道教授による

パウリのスピン常磁性の説明図 山田、佐藤、伊藤、佐宗、沢田著 機能材料のための量子工学 縮退系 非縮退系:Curie law (永宮・久保「固体物理学」より)

常磁性の応用 常磁性共鳴 ESR(電子スピン共鳴) メーザー(マイクロ波のレーザー) NMR(核スピン共鳴) 断熱消磁による冷却 固体レーザ(常磁性イオンの光学現象)

磁気共鳴 磁気共鳴法:微量の点欠陥のキャラクタリゼーションに力を発揮する。 磁気共鳴:磁界中におかれた磁気モーメントが特定の周波数の電磁波を共鳴的に吸収する現象。 電子・原子核・ミュオンのスピンがあり、それに対応して、磁気共鳴には電子スピン共鳴(ESR)、核磁気共鳴(NMR)、ミュオンスピン共鳴(μSR)がある。

スピン共鳴 1945年BlochのグループがNMRの理論と実験に成功(Stanford大) 1945年Purcellがスピン共鳴緩和の古典論を、Bloembergenがスピン緩和の量子論を確立(Harvard大) 1945年Zavoisky(ソ)が電子常磁性共鳴を発見

スピン共鳴の分類 種類 共鳴素子 スピン g値 内容 ESR 電子 1/2 EPR CESR FMR AFMR 常磁性共鳴 強磁性共鳴 1kOeでの共鳴周波数 内容 ESR 電子 1/2 2.0023 2.80247GHz EPR CESR FMR AFMR 常磁性共鳴 伝導電子ESR 強磁性共鳴 反強磁性共鳴 NMR 原子核 2.6752 4.257708 MHz PQR 核磁気共鳴 核四重極共鳴 SR ミューオン 2.002 13.554MHz +SR -SR 格子間位置 水素1s状態

ESRとNMR NMR:感度低い→最近のFTNMRにより同程度 ESR:感度=1014spin/cm3 ;FT-ESRは更に高感度 共鳴位置、線幅、緩和時間(T1, T2) NMR:感度低い→最近のFTNMRにより同程度 二重共鳴法 ENDOR: ESRを用いてNMRを見る ODMR: 光吸収・発光をモニタとしてESRを見る ODENDOR: 光吸収をモニタとしてENDORを見る

ESR Larmor回転 dM/dt=[MH0] H0//zとすると  d2Mx/dt2=-2H02Mx, d2My/dt2=-2H02My 固有振動数 =||H0

e=(電子磁気モーメント)/(電子のスピン角運動量)=-geeBS/hS=-gee/2mc ゼーマン分裂 ESR 電子スピンの場合 e=(電子磁気モーメント)/(電子のスピン角運動量)=-geeBS/hS=-gee/2mc ゼーマン分裂 +g BH/2 -gBH/2 H

ESR 結晶のESR 結晶中に不純物原子や空孔などの点欠陥が不対スピン電子を束縛している場合ESRが観測される。また、結晶界面や非晶質においてダングリングボンドがある場合にもESRが観測される。 特に、不純物として遷移金属原子を含むときは、d電子やf電子が不完全殻を作るため不対スピンが生じ、ESRセンターとなる。

ESR ESR測定装置

ESR 遷移金属イオンの3d系の結晶場分裂 自由原子・イオンのd電子は原子核の近くに局在しており多電子系のエネルギー状態(多重項として記述される)をもつが、結晶中におかれると、d電子は母体原子と共有結合を作り、これによってエネルギー状態は分裂する(あたかも結晶中のイオンのつくる電界によって分裂するように振る舞うので結晶場分裂と呼ぶ)。

ESR d軌道と結晶場分裂 e軌道: t2軌道:3重縮退 2重縮退 反結合軌道 結晶場分裂 eg* d t2g* 3d d 2p 非結合軌道 t2g 8面体配位では、d軌道と配位子のp軌道との重なりの大きいegがt2gよりエネルギーが高い。 eg 結合軌道

ESR 8面体配位と4面体配位の比較 8面体配位:イオン結合性強い 4面体配位:共有結合性強い tet=(4/9)oct 反転対称性をもつ t2g軌道はeg軌道より低エネルギー 4面体配位:共有結合性強い 反転対称性なし e軌道はt2軌道より低エネルギー tet=(4/9)oct eg t2 oct tet t2g e 8面体配位 4面体配位

ESR 1電子準位と多電子準位 8面体配位 high spin: dn系を例に 2T2 3T1 4A2 5E 6A1 5T2 4T1 3A2 eg t2g 3d1 Ti3+ 3d2 V3+ 3d3 Cr3+ 3d4 Cr2+ Mn3+ 3d5 Mn2+ Fe3+ 3d6 Fe2+ Co3+ 3d7 Co2+ Ni3+ 3d8 Ni2+ Cu3+ 3d9 Cu2+

ESR ルビー(Al2O3:Cr)の結晶場遷移 多電子 の準位 ESR 結晶場の強さ

ESR 基底状態のZeeman分裂とESR h Sz=1/2 6A2g Sz=3/2 零磁場分裂 H 零磁場分裂ないとき:等間隔に分裂→1本の共鳴線 零磁場分裂あるとき:3本の共鳴線

H=BSgH0+D{Sz2-S(S+1)/3}+E(Sx2-Sy2) 第1項:Zeeman項 第2項:1軸異方性 第3項:2軸異方性 ESR スピンハミルトニアン H=BSgH0+D{Sz2-S(S+1)/3}+E(Sx2-Sy2) 第1項:Zeeman項 第2項:1軸異方性 第3項:2軸異方性 D,E:単イオン異方性係数

ESR クラマース2重項 と非クラマース2重項 Kramersの定理:奇数個の局在電子を含む系(Cr3+、Fe3+、Eu2+など)では結晶場分裂によって完全に縮退が解けることはなく、常にスピン2重項(±1/2のスピンをもつエネルギー状態が縮退している状態)が残る。 、偶数個の電子を含む系(Cr2+、Fe2+、Tb3+など)では、偶然縮退がない限り2重項とはならない。

ESR CuAlS2単結晶における微量遷移金属イオンの検出 共鳴磁界の角度変化をともなう5本の微細構造をもつ共鳴線:Fe3+(3d5) H//cにのみ現れる異方性のg//=8.15の共鳴線:Cr2+(3d4) 等方的なg=11.95の共鳴線: I族あるいはIII族の関与する真性欠陥? CuAlS2単結晶のESRスペクトル(温度100K)

ESR ドナー・アクセプタのESR ドナーのESR:g<ge=2.0023 Siのドナー アクセプタのESR:g>>ge g-gc=-2.5x10-4 (P donor), -3.8x10-4 (As donor) ここにgc=1.99845; g//-g=1.03x10-3 (P donor), 1.10x10-3 (As donor) アクセプタのESR:g>>ge 価電子帯はスピン軌道相互作用を受けておりSはよい量子数ではなく通常はESRが観測されない。 低対称場があれば、スピン成分が分離→ESR CuAlS2のVCuアクセプタ:g=2.019(光誘起A信号)

ESR CuGaSe2単結晶のESRとPL THM-grown crystal A信号:異方的 I信号:等方的 Fe-X複合欠陥 I信号:等方的 Se空孔(VSe) H2-annealで増大 O2-annealで減少 792nmの発光:CB-VSe遷移 0deg 90deg A I (a) as-grown (b) H 2 - annealed 100 200 300 400 500 (c) O Magnetic Field [ mT] PL Intensity [ a.u.] 769 nm 789 (a) as- grown 768nm 792.5nm 20K (b) H 2 - annealed 700 800 900 1000 1100 1200 Wave Length [ nm] 785nm (c) O As-grown H2-anneal VSe O2-anneal

ESR 超微細相互作用(電子スピン・核スピン間の相互作用) 第1項:hyperfine interaction;その電子が束縛されている原子核の核スピンI0からの有効磁界による相互作用エネルギー 第2項:super hyperfine interaction; 周りの原子核の核スピンIkからの有効磁界によるエネルギー

ESR 超微細相互作用を用いた置換サイトの同定 CuAlS2:Vの信号には8本の超微細構造:Vの同位元素の51V(I=7/2)による超微細分裂。 Ti3+の共鳴線には超微細分裂因子A=7.379×10-4cm-1をもって等間隔に並んだ21本の超微細構造;Tiの第2隣接の27Al核(I=5/2)からの超微細相互作用: 第2隣接のAlの数が4個→Alサイトを置換 CuAlS2単結晶中の(a) Ti3+および (b) V3+のESRスペクトル (温度110K)

ESR 超微細構造による真性欠陥の同定 2本の共鳴線のそれぞれが配位子による5本の超微細構造(強度比1:4:6:4:1)を示す。 2本の吸収線→中心原子核のI=1/2 5本の超微細構造→Imax=2→配位子のI=1/2が導かれる。 このESRはPGa(4個のP原子で囲まれたP)に同定 GaPにおけるPアンチサイトのESRスペクトル

CuAlS2単結晶において観測された光誘起ESR信号 ESR 光ESRによる真性欠陥準位の同定 CuAlS2単結晶をキャビティに入れて光を断った状態で温度を低下し、キセノンランプの白色光を照射→照射前に見られた残存Fe不純物のESR信号が減少し正孔によるESR(g=2.019)が現れる。 CuAlS2単結晶において観測された光誘起ESR信号

CuAlS2単結晶において観測された光誘起ESR信号Aの励起スペクトル ESR 光誘起ESR信号の励起スペクトル A信号: 365nm(3.39eV)の光の照射で励起。 A信号の温度変化のアレニウスプロットからEa=190meV。 このEaを励起スペクトルのピーク位置3.39eVに加えると3.58eVとなりCuAlS2のEg=3.55eVに一致。 3.39eV Ea CuAlS2単結晶において観測された光誘起ESR信号Aの励起スペクトル

常磁性の応用 断熱消磁 低温で等温状態で強い磁界をかけてスピンを整列させると、P1→P2のようにエントロピーが低下する。(このとき発生する磁化熱は液体ヘリウムなどで除去。)次に断熱的に磁化を取り除くと温度が低下(P2→P3)する。

反磁性とは 大多数の非磁性物質は軌道磁気モーメント、スピン磁気モーメントともに持たない。 しかしこれらの物質に外部から磁界を加えると逆向きの磁化が発生する。このような性質を反磁性という。

反磁性の古典論 磁界中での自由電子のローレンツ力による運動を考える。 磁界を中心軸とする螺旋運動がおきる。この螺旋運動は、磁界と逆向きの磁気モーメントをともなう。 しかし、境界のある媒体中では、境界での螺旋運動が壁と衝突しながら起こるため打ち消してしまう。

反磁性の量子的起源 角周波数ωで電子が周回しているとする。軌道の磁気モーメントmをもつ。 磁界Hを加えるとmが歳差運動をする。 電子は外部磁界に対して逆向きの磁化mを生じるような周回運動をし環状電流が生じる。

反磁性と反強磁性とはどう違うのですか。 反磁性は、非磁性物質において、磁界によって電子軌道の螺旋運動が生じて、Landau準位に量子化されることによって磁界と逆向きの磁化が生じる効果である。 日本語では紛らわしいのですが英語では反磁性はdiamagnetism、反強磁性はantiferromagnetismでまったく違った現象である。

反磁性の応用 積算電力計:アルミ板の反磁性を利用 強磁場による磁気浮上:壁に触れずに融解などができる

反磁性物質の磁場浮上 磁気浮上とは 磁気浮上状態の基礎物性も重要 横浜国大山口 リンゴの磁気浮上 光学ガラスの磁気浮上溶融凝固 (CO2レーザー加熱) 横浜国大山口

光学ガラスの磁気浮上 a b c d (東北大金研 茂木) 22.8 T A levitating glass cube Melting Beginning of laser irradiation Melting T > 600˚C 0T, room temp. The solidified sphere a b c d (東北大金研 茂木)

りんごの磁気浮上 マグネットの上方から見ている 0 T 18 T (東北大金研 茂木)

反磁性体の磁場配向 磁気異方性反磁性分子

(都立大 木村)

問題 反磁性体は磁界の変化を妨げるように逆向きの磁化を生じる。それではなぜ強い静磁界のもとで反磁性体を浮かせることができるのか