物理システム工学科3年次 「物性工学概論」 第3回 金はなぜ金ぴかか? ー金属の光学的性質ー

Slides:



Advertisements
Similar presentations
大学院物理システム工学専攻 2004 年度 固体材料物性第 8 回 -光と磁気の現象論 (3) - 佐藤勝昭ナノ未来科学研究拠点.
Advertisements

1 関西大学 サマーキャンパス 2004 関西大学 物理学教室 齊 藤 正 関大への物理 求められる関大生像 高校物理と大学物理 その違いとつながり.
宇宙ジェット形成シミュレー ションの 可視化 宇宙物理学研究室 木村佳史 03S2015Z. 発表の流れ 1. 本研究の概要・目的・動機 2. モデルの仮定・設定と基礎方程式 3. シンクロトロン放射 1. 放射係数 2. 吸収係数 4. 輻射輸送方程式 5. 結果 6. まとめと今後の発展.
円線図とは 回路の何らかの特性を複素平面上の円で表したもの 例えば、ZLの変化に応じてZinが変化する様子 Zin ZL
電子物性第1 第4回 ーシュレーディンガーの波動方程式ー 電子物性第1スライド4-1 目次 2 はじめに 3 Ψがあると電子がある。
物理システム工学科3年次 物性工学概論 第火曜1限0023教室 第4回半導体の色
物理システム工学科3年次 物性工学概論 火曜1限0035教室 第4回半導体の色
電磁気学C Electromagnetics C 7/27講義分 点電荷による電磁波の放射 山田 博仁.
第1章 第1節 情報のディジタル化のしくみ 4 音の表現 5 画像の表現
電磁気学Ⅱ Electromagnetics Ⅱ 6/5講義分 電磁波の反射と透過 山田 博仁.
       光の種類 理工学部物理科学科 07232034 平方 章弘.
金属の色の物理的起源 東京農工大学 佐藤勝昭.
金色の石に魅せられて -光で探る新しい 機能性材料-Part1
第1章 第1節 情報のディジタル化のしくみ 4 音の表現 5 画像の表現
電子物性第1 第3回 ー波動関数ー 電子物性第1スライド3-1 目次 2 はじめに 3 電子の波動とは? 4 電子の波動と複素電圧
物理システム工学科3年次 「物性工学概論」 第5回半導体の色(2) ー半導体の電気的性質ー

次に 円筒座標系で、 速度ベクトルと加速度ベクトルを 求める.
物理システム工学科3年次 物性工学概論 第3回講義
5.アンテナの基礎 線状アンテナからの電波の放射 アンテナの諸定数
1.Atwoodの器械による重力加速度測定 2.速度の2乗に比例する抵抗がある場合の終端速度 3.減衰振動、強制振動の電気回路モデル
電磁気学C Electromagnetics C 7/13講義分 電磁波の電気双極子放射 山田 博仁.
工学系12大学大学院単位互換e-Learning科目 磁気光学入門第3回:電磁気学に基づく磁気光学の理論(1)
(ラプラス変換の復習) 教科書には相当する章はない
電気回路学Ⅱ エネルギーインテリジェンスコース 5セメ 山田 博仁.
特殊相対性理論での光のドップラー効果と光行差
黒体輻射とプランクの輻射式 1. プランクの輻射式  2. エネルギー量子 プランクの定数(作用量子)h 3. 光量子 4. 固体の比熱.
前期量子論 1.電子の理解 電子の電荷、比電荷の測定 2.原子模型 長岡モデルとラザフォードの実験 3.ボーアの理論 量子化条件と対応原理
表色系 色を合成するのに、光のRGBで合成する加法混色や、絵の具のようなC(シアン)Y(黄色)M(マゼンタ)で合成する減法混色などが知られているが、このように、色は独立した3つの成分で表現できる(表色系という)とされています。 映像信号を扱う場合には通常RGB表色系を使います。これは撮像する時、モニターで表示する時はRGBの加法混色であることに由来しています。RGB表色系を用いた別の表現として、YUV表色系があります。これはY(輝度)とU,V(二つの色差)で色を表すもので、色々定義があります。YUVという
物理システム工学科3年次 物性工学概論 第3回講義 火曜1限0035教室
物理システム工学科3年次 物性工学概論 第3回講義 火曜1限0023教室
大学院物理システム工学専攻2004年度 固体材料物性第7回 -光と磁気の現象論(2)-
電磁気学C Electromagnetics C 5/28講義分 電磁波の反射と透過 山田 博仁.
黒体輻射 1. 黒体輻射 2. StefanのT4法則、 Wienの変位測 3. Rayleigh-Jeansの式
6. ラプラス変換.
電磁気学Ⅱ Electromagnetics Ⅱ 6/30講義分 電磁波の反射と透過 山田 博仁.
今後の予定 4日目 10月22日(木) 班編成の確認 講義(2章の続き,3章) 5日目 10月29日(木) 小テスト 4日目までの内容
前回の講義で水素原子からのスペクトルは飛び飛びの「線スペクトル」
電磁気学C Electromagnetics C 7/17講義分 点電荷による電磁波の放射 山田 博仁.
大学院理工学研究科 2004年度 物性物理学特論第4回 -光と磁気の現象論(3):反射とKerr効果-
量子力学の復習(水素原子の波動関数) 光の吸収と放出(ラビ振動)
光電効果と光量子仮説  泊口万里子.
電子物性第1 第11回 ー金属の電気的性質ー 電子物性第1スライド11-1 目次 2 はじめに 3 導電率(電子バス) 4 欠陥の多い結晶
画像の情報量 Copyright(C)2008 Tsutomu Ohara All rights reserved.
2.4 Continuum transitions Inelastic processes
電磁気学Ⅱ Electromagnetics Ⅱ 6/9講義分 電磁場の波動方程式 山田 博仁.
電磁気学C Electromagnetics C 5/29講義分 電磁波の反射と透過 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 5/23, 5/30講義分 物質中でのMaxwell方程式 電磁波の反射と透過 山田 博仁.
平面波 ・・・ 平面状に一様な電磁界が一群となって伝搬する波
電磁気学Ⅱ Electromagnetics Ⅱ 8/11講義分 点電荷による電磁波の放射 山田 博仁.
大学院理工学研究科 2004年度 物性物理学特論第5回 -磁気光学効果の電子論(1):古典電子論-
物理システム工学科3年次 「物性工学概論」 第4回半導体の色 ー半導体の光学的性質ー
今後の予定 (日程変更あり!) 5日目 10月21日(木) 小テスト 4日目までの内容 小テスト答え合わせ 質問への回答・前回の復習
これらの原稿は、原子物理学の講義を受講している
振動分光・電気インピーダンス 基礎セミナー 神戸大学大学院農学研究科 農産食品プロセス工学教育研究分野 豊田淨彦.
2・1・2水素のスペクトル線 ボーアの振動数条件の導入 ライマン系列、バルマー系列、パッシェン系列.
電気回路学 Electric Circuits 情報コース4セメ開講 分布定数回路 山田 博仁.
工学系大学院単位互換e-ラーニング科目 磁気光学入門第7回 -磁気光学効果の電子論(2):量子論-
電気回路学Ⅱ 通信工学コース 5セメ 山田 博仁.
画像の情報量 Copyright(C)2008 Tsutomu Ohara All rights reserved.
物理学実験 II ブラウン運動 ー 第2日目 ー 電気力学結合系の特性評価 物理学実験II (ブラウン運動) 説明資料.
電磁気学C Electromagnetics C 5/20講義分 電磁場の波動方程式 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 5/22, 5/29講義分 物質中でのMaxwell方程式 電磁波の反射と透過 山田 博仁.
電子物性第1 第10回 ー格子振動と熱ー 電子物性第1スライド10-1 目次 2 はじめに 3 格子の変位 4 原子間の復元力 5 振動の波
工学系大学院単位互換e-ラーニング科目 磁気光学入門第7回 -磁気光学効果の電子論(2):量子論-
電磁気学Ⅱ Electromagnetics Ⅱ 5/28, 6/4講義分 物質中でのMaxwell方程式 電磁波の反射と透過 山田 博仁.
電磁気学C Electromagnetics C 7/10講義分 電気双極子による電磁波の放射 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 6/11, 6/18講義分 物質中でのMaxwell方程式 電磁波の反射と透過 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 6/7講義分 電磁波の反射と透過 山田 博仁.
電磁気学C Electromagnetics C 6/24講義分 共振器と導波路 山田 博仁.
Presentation transcript:

物理システム工学科3年次 「物性工学概論」 第3回 金はなぜ金ぴかか? ー金属の光学的性質ー 物理システム工学科3年次 「物性工学概論」 第3回 金はなぜ金ぴかか? ー金属の光学的性質ー 物理システム工学科量子機能工学分野 佐藤勝昭

講義内容 金属の色:金、銀、銅、鉄、白金 3原色:加法混色と減法混色/CIE色度図 ヒトが色を認識する仕組み 自由電子のプラズマ運動 誘電率と屈折率・消光係数 負の誘電率の意味するところ

金属の色:金、銀、銅、鉄、白金 銀 銅 しろがね あかがね 金 こがね 白金 くろがね 鉄

三原色 光の3原色(加法混色 ) 各色の強さを変えて混ぜ合わせると,いろいろな色の光になる。赤い光,緑の光,青い光を同じ強さで混ぜ合わせると, 白い光になる。 色の3原色 (減法混色) 各色を混ぜ合わせると,いろいろな色ができる。マゼンタ・シアン・イエローを同じ割合で混ぜると 黒になる。 赤(red) 緑(green) 青(blue) マゼンタ(red) シアン(blue) イエロー(yellow) http://www.shokabo.co.jp/sp_opt/spectrum/color3/color3.htm

CIE色度図 色を表す(表色)ためには, 一般に3つの数値が必要であるが,明るさの情報を犠牲にして2つの数値で色を表し,2次元の図に表現したものを, 色度図という. ある温度で光っている(熱放射・黒体輻射している)物体の色を測定して,温度と色の関係を色度図上に描くことができます.この曲線は黒体輻射の色軌跡と呼びます.なお,一般の光源は黒体輻射をしているわけではないので,色軌跡の上のある色で光っている光源の温度が,その点に対応する温度になっているとは限りません.そのため,色から決まる温度を色温度といいます 実際には感覚的な3原色RGBだけでは表せない色もあるので、機械による測色、表色、目の波長感度特性を詳しく調べて数値化した “表色上の3原色”である3刺激値XYZを使う。その3刺激値XYZにもとづいて,上記のような考え方にしたがい,2つの数値 (x , y ) を使ってxy 座標空間で色を表したものを, xy 色度図と呼ぶ。 http://www.shokabo.co.jp/sp_opt/spectrum/color3/color3.htm

ヒトはどのように色を認識するか 色を感じる 光を感じる なぜ3原色で表せるか。それは人間の色を感じる細胞が3種類あるからである。これらの細胞は錐体(すいたい)と呼ばれ,三種の錐体の送り出す信号の強さの違いによりさまざまな色を感じることができる。

RGB感度曲線とXYZ等色曲線 RGB感度曲線 一方,XYZ表色系はRGBでは再現できない色をも表現するシステムなので, XYZ表色系などにおける3色の“感度”曲線は,たとえば赤が2山のピークをもつなど少し変わった形になっています.

XYZ等色曲線と金属の色 3刺激値 金銀銅の分光反射率

金銀銅の反射スペクトル 波長表示 エネルギー表示

貴金属の選択反射の原因 光は電磁波の一種である。つまりテレビやラジオの電波と同じように電界と磁界が振動しながら伝わっていく。 金属中に光がはいると金属中に振動電界ができる。この電界を受けて自由電子が加速され集団的に動く。 電子はマイナスの電荷を持っているので、電位の高い方に引き寄せられる。その結果電位の高い方にマイナスの電荷がたまり、電位の低い側にプラスの電荷がたまって、電気分極が起きる。 外から金属に光の電界が進入しようとすると、逆向きの電気分極が生じて電界を遮蔽してしまって光は金属中に入れないことを示す。光が入れないということは、いいかえれば、光が全部反射されてしまうということを意味する。

電子分極の古典電子論 (1) 自由電子 電子の位置をu、有効質量をm*、散乱の緩和時間をτとすると、自由電子に対する運動方程式は、 電子分極の古典電子論 (1) 自由電子 電子の位置をu、有効質量をm*、散乱の緩和時間をτとすると、自由電子に対する運動方程式は、 ここで、E、uにe-iωtの形を仮定し、自由電子による分極Pf=-Nfquの式に代入し、D=ε0εrE=ε0E+Pfの式を使うことにより、

自由電子による電子分極 D=ε0E+P E 電界の印加により電子と核の 相対位置が変化し、逆向きの分極を生じる P + - + + + + - E D=ε0E+P 電界の印加により電子と核の 相対位置が変化し、逆向きの分極を生じる

ドルーデの式 誘電率の実数部は        において0を横切る。 負の誘電率をもつと、光は中に入り込めず、強い反射が起きる。

束縛電子系の電子分極 P + - + + + - E

電子分極の古典電子論 (2) 束縛電子 束縛電子についての運動方程式は、電子の位置をu,有効質量をm*、緩和時間τとすると, 電子分極の古典電子論 (2) 束縛電子 束縛電子についての運動方程式は、電子の位置をu,有効質量をm*、緩和時間τとすると, m*d2u/dt2+(m*/τ)du/dt+m*ω02u=qE   で与えられる。これより束縛電子による電気分極Pbを求め、比誘電率を求めると、 εr=1-ωb2/(ω2+iω/τ-ω02) ここにωb2=Nbq2/m*ε0 である。

ローレンツの分散式 この式の実数部と虚数部は、それぞれ εr'=1-ωb2(ω2-ω02)/{(ω2-ω02)2+(ω/τ)2} となる。これはいわゆるローレンツの分散式である。

光学定数:屈折率と消光係数 連続媒質中をx方向に進む光の電界ベクトルEは  で表される。ここにnは屈折率とκは消光係数である。nとを併せて光学定数という。 N=n+iを複素屈折率とよぶ。 Maxwell方程式に代入することにより、 N2=εr を得る。    従って(n+i)2= εr’+i εr” 実数部同士、虚数部同士を等しいとおいて εr’=n2-κ2 εr”=2nκ を得る。

負の誘電率と反射率 空気中から複素屈折率Nの媒体への垂直に入射した光の電界に対する振幅反射率はr=(N-1)/ (N+1)で与えられる。 もし、比誘電率rが負の実数であったとし、 r­=-a(aは正の数)とすると、N=r1/2=ia1/2 であるから、r= ( ia1/2-1)/( ia1/2+1)である。 光強度の反射率Rは電界の絶対値の2乗に比例するのでR=|r|2=(a+1)/(a+1)=1、即ち100%となる。

貴金属の誘電率スペクトル

復習してほしいこと 自由電子に対する運動方程式を解いて、電界Eを加えたときの電子変位uを求め、P=nquを使って分極Pを計算し、D=0P+E、D= r0Eからrに対する式(Drudeの式)を求めよ。 Maxwellの方程式を解いてr=N2を導け。 ただし、 rot rot E=-2E+(・E)Eおよび ・E=0を考慮せよ。

予習の勧め シリコンのバンド構造について 量子物性工学配付資料2001,5.25 に基づいて(http://www.tuat.ac.jp/~katsuaki/r010525p.pdf) 原子の寄り集まりと電子のバンドの項を読んでおいてください。 k空間の考え方を修得してください。