磁性工学05.04.21 第2回 磁石を微細にしていくと? 佐藤勝昭.

Slides:



Advertisements
Similar presentations
物理化学 福井工業大学 工学部 環境生命化学科 原 道寛. 物理化学: 1 章原子の内部 (メニュー) 1-1. 光の性質と原子のスペクトル 1-2. ボーアの水素原子モデル 1-3. 電子の二重性:波動力学 1-4. 水素原子の構造 1-5. 多電子原子の構造 1-6.
Advertisements

無機化学 I 後期 木曜日 2 限目 10 時半〜 12 時 化学専攻 固体物性化学分科 北川 宏 301 号室.
材料系物理工学 第1回 磁気に親しもう 量子機能工学 佐藤勝昭. 第1部 磁性 第1回 ( 月 ) 磁気に親しもう – 磁石、 HDD 、 MD 、モーター、磁場、磁束密度、磁化、磁気 モーメントとは何か、磁化曲線、反磁界、ヒステリシス、軟 質磁性体、硬質磁性体.
物理システム工学科3年次 物性工学概論 第火曜1限0031教室 第13回 スピンエレクトロニクスと材料[2] 磁性の起源・磁気記録
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛
材料系物理工学 第2回 磁石を微細にしていくと?
・力のモーメント ・角運動量 ・力のモーメントと角運動量の関係
大学院物理システム工学専攻2004年度 固体材料物性第3回
物理化学(メニュー) 0-1. 有効数字 0-2. 物理量と単位 0-3. 原子と原子量 0-4. 元素の周期表 0-5.
講師:佐藤勝昭 (東京農工大学工学部教授)
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
第6回:電流と磁場(2) ・電流が磁場から受ける力 ・磁場中の荷電粒子が受ける力とその運動 今日の目標
W e l c o m ! いい天気♪ W e l c o m ! 腹減った・・・ 暑い~ 夏だね Hey~!! 暇だ。 急げ~!!
各種磁気センサの動作原理と応用 ~講義内容~ ホール素子、MRセンサ、GMRセンサ、MIセンサ、FGセンサ等
小笠原智博A*、宮永崇史A、岡崎禎子A、 匂坂康男A、永松伸一B、藤川高志B 弘前大学理工学部A 千葉大大学院自然B
磁性工学特論 第4回 磁気ヒステリシスはなぜ生じる
物理システム工学科3年次 「物性工学概論」 第13回 スピンエレクトロニクス(1) 磁性入門
CRL 高周波磁界検出用MOインディケーターの合成と評価 1. Introduction 3. Results and Discussion
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛
1.Atwoodの器械による重力加速度測定 2.速度の2乗に比例する抵抗がある場合の終端速度 3.減衰振動、強制振動の電気回路モデル
前回の内容 結晶工学特論 第4回目 格子欠陥 ミラー指数 3次元成長 積層欠陥 転位(刃状転位、らせん転位、バーガーズベクトル)
東北大学工学部・工学研究科 知能デバイス材料学専攻 量子材料学分野
電界(電場)は 1C に 働く力.
講師:佐藤勝昭 (東京農工大学工学部教授)
磁歪式振動発電の 高出力化と発電床への応用
臨床診断総論 画像診断(3) 磁気共鳴画像 Magnetic Resonance Imaging: MRI その1
物理システム工学科3年次 物性工学概論 第火曜1限0023教室 第12回 スピンエレクトロニクスと材料[2] 磁性の基礎
Ⅰ 孤立イオンの磁気的性質 1.電子の磁気モーメント 2.イオン(原子)の磁気モーメント 反磁性磁化率、Hund結合、スピン・軌道相互作用
物理システム工学科3年次 物性工学概論 第火曜1限0031教室 第14回 スピンエレクトロニクスと材料[3]  磁気記録、磁気抵抗効果、MRAM 副学長 佐藤勝昭.
Ⅲ 結晶中の磁性イオン 1.結晶場によるエネルギー準位の分裂 2.スピン・ハミルトニアン
動力学(Dynamics) 運動方程式のまとめ 2008.6.17
Ⅳ 交換相互作用 1.モット絶縁体、ハバード・モデル 2.交換相互作用 3.共有結合性(covalency)
材料系物理工学 第4回 磁気ヒステリシスはなぜ生じる
前回の内容 結晶工学特論 第5回目 Braggの式とLaue関数 実格子と逆格子 回折(結晶による波の散乱) Ewald球
大学院物理システム工学専攻2004年度 固体材料物性第4回
原子核物理学 第4講 原子核の液滴模型.
材料系物理工学 第3回 鉄はなぜ磁気をおびる?
前期量子論 1.電子の理解 電子の電荷、比電荷の測定 2.原子模型 長岡モデルとラザフォードの実験 3.ボーアの理論 量子化条件と対応原理
物理システム工学科3年次 物性工学概論 第火曜1限0035教室 第12回 スピンエレクトロニクスと材料[2]磁性の起源・磁気記録
磁性工学特論 第1回 磁気に親しもう 非常勤講師 佐藤勝昭(東京農工大学).
HERMES実験における偏極水素気体標的の制御
大学院物理システム工学専攻2004年度 固体材料物性第2回
電力 P ( Power ) 単位 ワット W = J / sec
大学院物理システム工学専攻2004年度 固体材料物性第7回 -光と磁気の現象論(2)-
物理システム工学科3年次 物性工学概論 第2回講義 火曜1限0035教室
電磁気学C Electromagnetics C 5/28講義分 電磁波の反射と透過 山田 博仁.
Ⅴ 古典スピン系の秩序状態と分子場理論 1.古典スピン系の秩序状態 2.ハイゼンベルグ・モデルの分子場理論 3.異方的交換相互作用.
前回の講義で水素原子からのスペクトルは飛び飛びの「線スペクトル」
電磁気学C Electromagnetics C 7/17講義分 点電荷による電磁波の放射 山田 博仁.
原子核物理学 第2講 原子核の電荷密度分布.
物理システム工学科3年次 「物性工学概論」 第1回講義 火曜1限67番教室
Appendix. 【磁性の基礎】 (1)磁性の分類[:表3参照]
半導体の歴史的経緯 1833年 ファラデー AgSの負の抵抗温度係数の発見
電子物性第1 第11回 ー金属の電気的性質ー 電子物性第1スライド11-1 目次 2 はじめに 3 導電率(電子バス) 4 欠陥の多い結晶
2.4 Continuum transitions Inelastic processes
電磁気学Ⅱ Electromagnetics Ⅱ 6/9講義分 電磁場の波動方程式 山田 博仁.
学年   名列    名前 物理化学 第1章5 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
大学院理工学研究科 2004年度 物性物理学特論第5回 -磁気光学効果の電子論(1):古典電子論-
第6回講義 前回の復習 ☆三次元井戸型ポテンシャル c a b 直交座標→極座標 運動エネルギーの演算子.
Bi置換したCaMnO3の結晶構造と熱電特性
静電場、静磁場におけるMaxwellの式
学年   名列    名前 物理化学 第1章5 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
α decay of nucleus and Gamow penetration factor ~原子核のα崩壊とGamowの透過因子~
誘導起電力は 巻数と 磁束の時間変化 に比例する.
2・1・2水素のスペクトル線 ボーアの振動数条件の導入 ライマン系列、バルマー系列、パッシェン系列.
原子核物理学 第6講 原子核の殻構造.
工学系大学院単位互換e-ラーニング科目 磁気光学入門第7回 -磁気光学効果の電子論(2):量子論-
講師:佐藤勝昭 (東京農工大学大学院教授)
60Co線源を用いたγ線分光 ―角相関と偏光の測定―
Presentation transcript:

磁性工学05.04.21 第2回 磁石を微細にしていくと? 佐藤勝昭

復習コーナー 第1回で学んだこと 身の周りにある磁性材料をハードディスクを例に紹介した。 磁界、磁化、磁束密度、磁極、磁気モーメントなどについて概念を紹介した。 磁界の測定方法、磁化の測定方法を紹介した。 軟質(ソフト)磁性、硬質(ハード)磁性の磁化曲線を示した。

前回の問題 10cmあたり1000巻きのコイルに1Aの電流を流したときの磁界の強さはSI単位ではいくらか。cgs単位ではいくらか。 答え:10000A/m=126Oe ホール素子を使って磁界の大きさを測定できることを説明せよ。 半導体に電流を流しながら面に垂直に磁界を印加すると、ローレンツ力でキャリアの進行方向が曲げられるが、外部回路が開いていると電荷が蓄積しホール電圧が生じる。 VH 電子 B Ey Ex

磁石を切るとどうなる 磁石は分割しても小さな磁石ができるだけ。 両端に現れる磁極の大きさ(単位Wb/cm2)は小さくしても変わらない。 N極のみ、S極のみを 単独で取り出せない。 岡山大のHPより(http://www.magnet.okayama-u.ac.jp/magword/domain/)

磁化過程と磁区(domain) (a)は着磁される前、すなわち磁石としての性質を示さない状態を表しています。構造的に、内部のスピンは互いにうち消しあって磁石としての性質がゼロになるような配置をしています。外から磁界を加えると、 (b)のようにその方向を向くものが増え、 その体積も増えていきます。 (c)のように全部のスピンが 同一方向を向くとこれ以上 磁化が増えないので、飽和 したといいます。 (a) (b) (c)

強磁性体の磁化曲線(ヒステリシス) O→B→C:初磁化曲線 C→D: 残留磁化 D→E: 保磁力 C→D→E→F→G→C: ヒステリシスループ 残留磁化 飽和磁化 保磁力 初磁化曲線 初磁化状態 Hcによる磁性体の分類 Hc小:軟質磁性体 Hc中:半硬質磁性体 Hc大:硬質磁性体 マイナーループ (高梨:初等磁気工学講座テキスト)

磁性体を顕微鏡で見ると 図は、磁性微粒子の磁性体に塗布して顕微鏡で観察した磁区像である。(ビッターパターン) 外部磁界を加えないとき、磁性体は全体がいくつかの磁区に分かれ全体としての磁化を打ち消している。 ミリメータサイズ 0.3 mm

ファラデー効果を用いた磁区イメージング ファラデー効果を用いて磁区を画像化 磁性ガーネットの磁化過程を見る B=0G B=4G B=2G 検光子 偏光子 対物レンズ 試料 穴あき電磁石 光源 CCDカメラ

磁気力顕微鏡で見ると 磁気力顕微鏡(MFM)は、微小な磁石を尖端部にもつカンチレバーに働く磁気力を測定し画像化する。光学顕微鏡を使っては観測できない小さな磁区もMFMを使えば観測できる。 ミクロンサイズ カンチレバー 磁区 磁性体コートチップ 2μm x

mサイズの磁性体と環流磁区 表面に磁極を作らない磁気構造が環流磁区(closure domain)である。 90°磁壁にそって生じるわずかな磁極のため、MFM画像が見られる 90°磁壁 1μm シリコンに埋め込んだパーマロイ(Ni80Fe20) のMFM画像(佐藤研松本剛君測定)

ナノ構造磁性体の磁極 図は、シリコンに埋め込んだ100nm×300nmのサイズの磁性体ドットの電子顕微鏡像と磁気力顕微鏡像である。 白・黒の対が並んでいるが、白がS極、黒がN極である。 走査型電子顕微鏡 でみた磁性ドット像 磁気力顕微鏡で見た磁性ドット配列の磁気構造

究極の磁石:原子磁気モーメント さらにどんどん分割して 原子のレベルに達しても 磁極はペアで現れる S          N r 磁気モーメント m=qr [Wbm] -q [Wb] +q [Wb] さらにどんどん分割して 原子のレベルに達しても 磁極はペアで現れる この究極のペアにおける 磁極の大きさと間隔の積を磁気モーメントとよぶ 原子においては、電子の軌道運動による電流と電子のスピンよって磁気モーメントが生じる。 -e  r 原子磁石

磁気モーメント 一様な磁界H中の磁気モーメントに働くトルクTは T=qH r sin=mH sin 磁気モーメントのもつポテンシャルEは S          N r 磁気モーメント m=qr [Wbm] -q [Wb] +q [Wb] qH rsin  -qH 一様な磁界H中の磁気モーメントに働くトルクTは T=qH r sin=mH sin 磁気モーメントのもつポテンシャルEは   E=Td=  mH sin d=1-mHcos E=-mH 単位:E[J]=-m[Wbm]  H[A/m]; (高梨:初等磁気工学講座)より

環状電流と磁気モーメント 電子の周回運動→環状電流 -e[C]の電荷が半径a[m]の円周上を線速度v[m/s]で周回 →1周の時間は2a/v[s]  →電流はi=-ev/2πa[A]。 磁気モーメントは、電流値iに円の面積 S= a2をかけることにより求められ、 =iS=-eav/2となる。 一方、角運動量は=mav であるから、これを使うと磁気モーメントは =-(e/2m)  となる。 -e  r N S

軌道角運動量の量子的扱い 量子論によると角運動量は を単位とするとびとびの値をとり、電子軌道の角運動量はl=Lである。Lは整数値をとる =-(e/2m) に代入すると -e  軌道磁気モーメントl=-(e/2m)L=- BL ボーア磁子 B=e/2m =9.2710-24[J/T] 単位:[J/T]=[Wb2/m]/[Wb/m2]=[Wbm]

もう一つの角運動量:スピン 電子スピン量子数sの大きさは1/2 量子化軸方向の成分szは±1/2の2値をとる。 スピン磁気モーメントはs=-(e/m)sと表される。 従って、s=-(e/m)s=- 2Bs 実際には上式の係数は、2より少し大きな値g(自由電子の場合g=2.0023)をもつので、 s=- gBsと表される。

スピンとは? ディラックの相対論的電磁気学から必然的に導かれる。 スピンはどのように導入されたか 電子スピン、核スピン Na(ナトリウム)のD線のゼーマン効果(磁界をかけるとスペクトル線が2本に分裂する。)を説明するためには、電子があるモーメントを持っていてそれが磁界に対して平行と反平行とでゼーマンエネルギーが異なると考える必要があったため、導入された量子数である。 電子スピン、核スピン

電子の軌道占有の規則 各軌道には最大2個の電子が入ることができる 電子はエネルギーの低い軌道から順番に入る エネルギーが等しい軌道があれば、まず電子は1個ずつ入り、その後、2個目が入っていく n=3 M-shell 3s, 3p, 3d 軌道 最大電子数 2+6+10=18 n=2 L-shell n=1 K-shell 2s, 2p 軌道 最大電子数2+6 1s 軌道 最大電子数2

主量子数と軌道角運動量量子数 主量子数 n 軌道角運動量量子数 l=n-1, .... ,0 n l m 1 1s 2 2s -1 2p 6 縮重度 1 1s 2 2s -1 2p 6 3 3s 3p -2 3d 10

元素の周期表 3d遷移金属

3d遷移元素 WebElementsTM Periodic table (http://www.webelements.com/)より スカンジウム チタン バナジウム クロム マンガン [Ar].3d5.4s1 [Ar].3d5.4s2 [Ar].3d1.4s2 [Ar].3d2.4s2 7S3 6S5/2 2D3/2 3F2 [Ar].3d3.4s2 4F3/2 鉄 コバルト ニッケル 銅 [Ar].3d6.4s2 [Ar].3d7.4s2 [Ar].3d10.4s1 [Ar].3d8.4s2 5D4 4F9/2 2S1/2 3F4 WebElementsTM Periodic table (http://www.webelements.com/)より

軌道角運動量量子と電子分布の形 s, p, d, f は軌道の型を表し、それぞれが方位量子数l=0, 1, 2, 3に対応する。sには電子分布のくびれが0であるが、pには1つのくびれが、dには2つのくびれが存在する。 1s 2s 2p 3d

局在した原子(多電子系)の合成角運動量 軌道角運動量の加算 軌道角運動量(方位)量子数をlとすると、その量子化方向成分(磁気量子数)m=lzは、 l, l-1・・・-l+1, -lの2l+1とおりの値を持ちうる。 1原子に2個のp電子があったとする。 p電子の方位量子数lは1であるから、磁気量子数はm=1, 0, -1の3つの値をもつ。原子の合成軌道角運動量L=2、Lz=2, 1, 0, -1, -2をとる。

フントの規則 原子が基底状態にあるときのL, Sを決める規則 原子内の同一の状態(n, l, ml, msで指定される状態)には1個の電子しか占有できない。(Pauli排他律) 基底状態では、可能な限り大きなSと、可能な限り大きなLを作るように、sとlを配置する。(Hundの規則1) 上の条件が満たされないときは、Sの値を大きくすることを優先する。(Hundの規則2) 基底状態の全角運動量Jは、less than halfではJ=|L-S| 、more than halfではJ=L+Sをとる。

多重項の表現 左肩の数字 2S+1 (スピン多重度) 中心の文字 Lに相当する記号 右下の数字 Jz 読み方singlet, doublet, triplet, quartet, quintet, sextet 中心の文字 Lに相当する記号 L=0, 1, 2, 3, 4, 5, 6に対応してS, P, D, F, G, H, I・・・ 右下の数字 Jz  例:Mn2+(3d5) S=5/2 (2S+1=6), L=0 (→記号:S) 6S5/2

遷移金属イオンの電子配置 3d1 3d2 3d3 3d4 3d5 3d6 3d7 3d8 3d9 3d10 2 -2 -1 1

演習コーナー 3価遷移金属イオンのL,S,Jを求め多重項の表現を記せ 電子配置 L S J 多重項 Ti3+ [Ar]3d1 V3+ [Ar]3d2 Cr3+ [Ar]3d3 Mn3+ [Ar]3d4 Fe3+ [Ar]3d5 Co3+ [Ar]3d6 Ni3+ [Ar]3d7