「Constraining the neutron star equation of state using XMM-Newton」

Slides:



Advertisements
Similar presentations
初期に複数のピークを示す古典新星 のスペクトルの変化 1 田中淳平、野上大作 ( 京都大学 ) 藤井貢 ( 藤井美星観測所 ) 、綾仁一哉 ( 美星天文台 ) 大島修 ( 水島工業高校 ) 、川端哲也 ( 名古屋大学 )
Advertisements

硬 X 線で探るブラックホールと銀河の進化 深沢泰司(広大理) 最近の観測により、ブラックホールの形成と 銀河の進化(星生成)が密接に関係することが わかってきた。 ブラックホール観測の最も効率の良い硬 X 線で 銀河の進化を探ることを考える。 宇宙を構成する基本要素である銀河が、いつ どのように形成され、進化してきたか、は、宇宙の.
宇宙ジェット形成シミュレー ションの 可視化 宇宙物理学研究室 木村佳史 03S2015Z. 発表の流れ 1. 本研究の概要・目的・動機 2. モデルの仮定・設定と基礎方程式 3. シンクロトロン放射 1. 放射係数 2. 吸収係数 4. 輻射輸送方程式 5. 結果 6. まとめと今後の発展.
ガンマ線バースト (GRBs) 硬 X 線からガンマ線領域で明るい ( keV) スパイク状の光度曲線 継続時間の長い / 短い GRB Seconds since trigger Counts / s GRB GRB GRB 発見 1967年7月2日.
乱れた磁場中を運動する 相対論的粒子からの放射 宇宙進化グループ 寺木悠人. 目次 1、本研究のモチベーション 2、モデルと定式化 3、計算結果 4、議論 5、まとめ.
2013 年度課題研究 P6 Suzaku によるガンマ線連星 LS I の観測データの解析 2014 年 02 月 24 日 種村剛.
宇宙年齢10億年以前におけるSMBHの存在 遠方宇宙の観測で宇宙10億歳(z~6)未満で10億M⦿程度以上の活動銀河核中のSMBHの存在を確認 赤方偏移 z SMBH質量 [M⦿] URAS J ~2×109 M⦿ 宇宙7.5億歳(z~7)
6.解析結果3:energy spectrum 1.Introduction
NGC 2043 銀河中 の 超光度X線源 (ULX) の スペクトル状態の遷移
X線による超新星残骸の観測の現状 平賀純子(ISAS) SN1006 CasA Tycho RXJ1713 子Vela Vela SNR.
弱磁場中性子星(低質量X線連星系)における
低質量X線連星(X線バースト天体)における元素合成
Hyper Luminous X-ray Source in ESO
プロポーザル準備/観測準備 ダストをたくさん持つ銀河 の赤外線分光観測の例 国立天文台 今西昌俊.
JAXA宇宙科学研究所 海老沢 研、辻本 匡宏 西はりま天文台 森鼻 久美子
AOによる 重力レンズクェーサー吸収線系の観測 濱野 哲史(東京大学) 共同研究者 小林尚人(東大)、近藤荘平(京産大)、他
ガンマ線連星LS 5039におけるTeVガンマ線放射とCTA
宇宙大規模プラズマと太陽コロナの比較研究
GRB 観測 相対論的 Jet の内側を探る 金沢大学 米徳 大輔、村上敏夫 今日のトピックは Inverse Compton
ガンマ線バースト (GRBs) ガンマ線で明るい ( keV) スパイク状の強度変動 継続時間の長いもの短いもの click
Astro-E2搭載X線CCD(XIS) BIチップにおける 新しい解析法の構築および応答関数の作成
数値相対論の展望        柴田 大 (東大総合文化:1月から京大基研).
M1M2セミナー すざく衛星による狭輝線1型セイファート銀河TonS180のワイドバンド観測
High-amplitude, long-term X-ray variability in the solar-type star HD 81809: The beginning of an X-ray activity cycle? F. Favata, G. Micela, S.L. Baliunas,
特殊相対性理論での光のドップラー効果と光行差
すざく衛星によるTeV γ線天体HESS J の観測 --dark accelerator?--
S3: 恒星とブラックホール (上田、野上、加藤)
S3: 恒星とブラックホール (上田、野上、加藤)
銀河物理学特論 I: 講義1-1:近傍宇宙の銀河の 統計的性質 Kauffmann et al
信号電荷の広がりとデータ処理パラメータの最適化
ガンマ線バーストジェット内部における輻射輸送計算
104K以下のガスを考慮したTree+GRAPE SPH法による 銀河形成シミュレーション ~Globular Cluster Formation in the Hierarchical Clustering Universe~ 斎藤貴之(北大) 幸田仁(NAOJ) 岡本崇(ダーラム大) 和田桂一(NAOJ)
太陽を見る 可視光 X線(ようこう衛星) 太陽フレア.
論文紹介 Novae as a Class of Transient X-ray Sources K. Mukai, M
SAX J1748.2−2808 からの 3 つの鉄輝線と593 秒周期の発見
「すざく」が NGC 4945 銀河中 に見付けた ブラックホール候補天体
Type Ia SN 2014J D 高木 勝俊 ・ Zheng et al. 2014
重力・重力波物理学 安東 正樹 (京都大学 理学系研究科) GCOE特別講義 (2011年11月15-17日, 京都大学) イラスト
高橋 弘充、北村 唯子、深沢 泰司 (広島大学)、
S3: 恒星とブラックホール (上田、野上、加藤)
「すざく」によるHESS J の観測 --dark accelerator?--
すざく衛星による NGC2403銀河の超光度天体の X線スペクトル解析
高エネルギー天体グループ 菊田・菅原・泊・畑・吉岡
星形成時間の観測的測定 東大天文センター M2 江草芙実 第4回 銀河shop 2004/10/19.
東邦大学理学部物理学科 宇宙・素粒子教室 上村 洸太
パルサーって何? 2019/4/10.
ガンマ線連星 LS I 放射モデル 2009/12/14 永江 修(広島大学).
黒澤君計算との違い 岸本 祐二.
瀬戸直樹(京大理) DECIGO WS 名古屋大学
宇宙線研究室 X線グループ 今こそ、宇宙線研究室へ! NeXT
「すざく」であばく超光度X線源 (P4-7) rikne
超高光度赤外線銀河(ULIRGs)中に埋もれたAGNの探査
星間物理学 講義1の図など資料: 空間スケールを把握する。 太陽系近傍から 銀河系全体への概観、 観測事実に基づいて太陽系の周りの様子、銀河系全体の様子を概観する。それぞれの観測事実についての理解はこれ以降の講義で深める。 2010/10/05.
「すざく」によるNGC1313中の大光度X線源の観測 September 20th, meeting of ASJ
COE外国出張報告会 C0167 宇宙物理学教室 D2 木内 学 ascps
3.8m新技術望遠鏡を用いた 超新星爆発の観測提案 -1-2mクラス望遠鏡による成果を受けて-
宇 宙 その進化.
星間物理学 講義 3: 輝線放射過程 I 水素の光電離と再結合
スペース重力波アンテナ DECIGO計画Ⅷ (サイエンス)
論文紹介07(2): ULXsの最近の論文から November 19, 2007 Tsunefumi Mizuno
スターバースト銀河NGC253の 電波スーパーバブルとX線放射の関係
2011年8月金沢大学集中講義 「X線天文学」 第2回 相対性理論とブラックホール
CHANDRA衛星の観測結果による、 球状星団M4(NGC6121)のスペクトル解析
超高角度分解能X線望遠鏡 Xmas Project
研究紹介:山形大学物理学科 宇宙物理研究グループ 柴田研究室
形成期の楕円銀河 (サブミリ銀河) Arp220.
BH science for Astro-E2/HXD and NeXT mission
すざく衛星によるSgr B2 分子雲からのX線放射の 時間変動の観測
ローブからのX線 ~ジェットのエネルギーを測る~
中性子星/ブラックホール連星の光度曲線の類似性
Presentation transcript:

「Constraining the neutron star equation of state using XMM-Newton」 コンパクト星(中性子星)における重力赤方偏移 高橋 弘充(ひろたか) 「Constraining the neutron star equation of state using XMM-Newton」 http://ads.nao.ac.jp/abs/2007arXiv0711.2572J +α、β、γ。。。 中性子星(NS)「近傍」を観測する目的: 一般相対性理論の検証 高密度状態での物性 → NSの質量、半径 : Equation of State (EOS)                  クォーク星の存在

一般相対論の検証(Fe-K ライン構造) - ラインの広がり(ドップラー効果) - ビーミング効果 - エネルギーが全体的に下がる(重力赤方偏移)

EOS に制限をかけるには?(その他の手法) 1. 降着が(ほとんど)起こっていないNS表面(大気)からの熱的放射を、   理論モデルと比較する。 2. 重力赤方偏移したライン構造(吸収線)を検出する。 3. 伴星による蝕があれば、連星の見込み角を決定する。   →可視光から求めた連星パラメータと組み合わせて NS の質量を推定できる。 降着が起こっている状態 降着が起こらないと、  - 降着円盤はない  - 放射はNS表面からのみ 1. については簡単に 3. については省略

1. NS表面(大気)からの放射 降着が起こっていない場合、基本的には黒体放射の形 (Lx ~ 1032-33 erg/s)     表面での核融合反応(Type I バースト) 冷却:放射 ただし、単純な黒体放射を仮定すると、放射領域が ~1 km と小さくなる。 これは見かけの温度が本来の温度よりも高く求まっているからだろう。 光学的な厚みが、(光子のエネルギー)-3 に比例し、高エネルギー側ほど 透けて見える (flux が高くなる)。(詳細は Brown et al. 1998 参照) 詳細な理論モデル Neutron Star Atmosphere (NAS)を構築している。 (Heinke et al. 2006 Appendix 参照)

実際の応用例 (Heinke et al. 2006) 47 Tuc X-7(球状星団中の暗いLMXB) NSA モデル(ほぼ 黒体放射)で再現 NS の EOS に制限がつく パラメータ: - NS の質量 - NS の半径(天体までの距離) - NS表面の温度 - NS の半径 ~15 km  (もし質量が 1.4 Msolar なら) - NS の質量 ~ 2.2 Msolar  (もし半径が 10 km なら) ただし、この低エネルギー側の放射は 本当に NSA に対応するものなのか?

暗い状態の LMXB で観測される放射の正体は? そもそも、黒体放射+ Power-law なことがある。 起源については、あまり考えられていない? 黒体放射が NS 大気だとして、数年間のスケールで変動しているかも? という報告がある。[現状のモデル(NS コアで考えられているプロセス)では、 減光(温度の低下)のタイムスケールはもっと長い]。 黒体放射が変動しているのか、吸収量や Power-law が変動しているのか? 高分散(回折格子)観測によって、酸素の吸収端の深さを測定すれば、 吸収量を正確に見積もれる。 永江君: 4U 1700 でも、このサイエンス(NS 表面の放射は変化しない?)が       使えるかもよ?

2. 重力赤方偏移したライン構造(吸収線) Cottam et al. 2002 による、重力赤方偏移の検出したとの報告 335 ks の EXO 0748-676 データ中で起こっていた、28 回(3.2 ks)の Type I バースト(NS表面での核融合爆発)を重ねたスペクトル 青線: Z=0.35 だけズレた吸収線を発見     → 重力赤方偏移 NSの質量:1.4~1.8 Msolar NSの半径:9~12 km

ただし。。。 - 2例目の報告はない(観測時間は短いが GS 1826-24 では検出できず)。 - そもそも同じ EXO 0748-676 でも、最近のデータからは検出できず。 (Cottam et al. 2007 参照) 570 ks のデータ中に、68 バースト(8.5 ks) 青線:Z=0.35 として見えていた構造がない。。。

2つの観測を比較すると、後者のデータにも微妙な構造が見える? 周囲の環境やバーストの性質が変わったのか。。。 ここに挙げられている天体は、Type I バーストのデータのみが使われていた。 - 遠くて暗いから - Type I バーストなら、NS表面の放射だと判別できるから 永江君:4U 1700 なら近いから、検出できる可能性あるんじゃないの?       例えば Fe なら、4.7~5.1 keV 付近に構造はない? 6.4/(1+0.35) = 4.7 keV, 6.9/(1+0.35) = 5.1 keV

まとめ いいアイデア(観測)を考えましょう。 - 理論的には、NSの質量 ~ 1.4 Msolar、半径~10 km と言われているが、  観測ではまだ十分に制限できていない状態。 - 一般相対論的な効果を直接的には検出できていない。 いいアイデア(観測)を考えましょう。