分子生物情報学(7) 遺伝子発現データの情報解析法 スケールフリーネットワーク

Slides:



Advertisements
Similar presentations
集中講義(九州大学数理学研究院) バイオ構造データに対する数理モデルと アルゴリズム( 1 ) スケールフリーネットワーク 阿久津 達也 京都大学 化学研究所 バイオインフォマティクスセンター.
Advertisements

コンピュータビジョン特論 第8回対象追跡 2006年11月22日 加藤丈和.
補章 時系列モデル入門 ー 計量経済学 ー.
Gene Constellator SystemTM
タンパク質相互作用ネットワークの スケールフリーモデル
伝播速度限定モデル Scale Free Network 上 の情報拡散 日本大学文理学部 情報システム解析学科 谷聖一研究室 古池 琢也
多数の疑似システムを用いた システム同定の統計力学 三好 誠司 岡田 真人 神 戸 高 専 東 大, 理 研
分子生物情報学 動的計画法に基づく配列比較法 (ペアワイズアライメント法)
奈良女子大集中講義 バイオインフォマティクス (6) モチーフ発見・隠れマルコフモデル
時空間データからのオブジェクトベース知識発見
生命情報学入門 機械学習を用いたタンパク質の分類法 2011年6月7日
「データ学習アルゴリズム」 第2章 学習と統計的推測 報告者 佐々木 稔 2003年5月21日 2.1 データと学習
京都大学 化学研究所 バイオインフォマティクスセンター
線形計画法 スケールフリーネットワーク 須藤 孝秀.
京都大学 化学研究所 バイオインフォマティクスセンター
補章 時系列モデル入門 ー 計量経済学 ー.
京都大学 化学研究所 バイオインフォマティクスセンター
奈良女子大集中講義 バイオインフォマティクス (10) スケールフリーネットワーク
スペクトル・時系列データの前処理方法 ~平滑化 (スムージング) と微分~
ガウス過程による回帰 Gaussian Process Regression GPR
サポートベクターマシン によるパターン認識
集中講義(九州大学数理学研究院) バイオ構造データに対する数理モデルと アルゴリズム(4) ブーリアンネットワーク
九州大学大学院 情報学専攻特別講義 (9) ブーリアンネットワークの 解析と制御
奈良女子大集中講義 バイオインフォマティクス (9) 相互作用推定
モデルの適用範囲 モデルの適用領域 Applicability Domain (AD)
第9章 混合モデルとEM 修士2年 北川直樹.
確率的学習アルゴリズムを用いた有限状態オートマトンの抽出に関する研究
混合ガウスモデルによる回帰分析および 逆解析 Gaussian Mixture Regression GMR
人工知能特論 9.パーセプトロン 北陸先端科学技術大学院大学 鶴岡 慶雅.
モデルの逆解析 明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌.
あらまし アンサンブル学習の大きな特徴として,多数決などで生徒を組み合わせることにより,単一の生徒では表現できない入出力関係を実現できることがあげられる.その意味で,教師が生徒のモデル空間内にない場合のアンサンブル学習の解析は非常に興味深い.そこで本研究では,教師がコミティマシンであり生徒が単純パーセプトロンである場合のアンサンブル学習を統計力学的なオンライン学習の枠組みで議論する.メトロポリス法により汎化誤差を計算した結果,ヘブ学習ではすべての生徒は教師中間層の中央に漸近すること,パーセプトロン学習では
確率的学習アルゴリズムを用いた有限状態オートマトンの抽出に関する研究
音響伝達特性を用いた単一マイクロホンによる話者の頭部方向の推定
ランダムグラフ エルデシュとレーニイによって研究された.→ER-model p:辺連結確率 N:ノード総数 分布:
第7章 疎な解を持つカーネルマシン 修士2年 山川佳洋.
生物統計学・第3回 全体を眺める(1) R、クラスタリング、ヒートマップ、各種手法
Anja von Heydebreck et al. 発表:上嶋裕樹
京都大学 化学研究所 バイオインフォマティクスセンター
タンパク質の進化 タンパク質は進化の過程でどのようにドメインを獲得してきたのだろうか? 今のタンパク質を調べることでわからないだろうか?
分子生物情報学(2) 配列のマルチプルアライメント法
Data Clustering: A Review
生命情報学特論 (8)複雑ネットワークと制御理論
分子生物情報学(3) 確率モデル(隠れマルコフモデル)に 基づく配列解析
生物統計学・第3回 全体を眺める(2) クラスタリング、ヒートマップ
Number of random matrices
データの型 量的データ 質的データ 数字で表現されるデータ 身長、年収、得点 カテゴリで表現されるデータ 性別、職種、学歴
生物情報ソフトウェア特論 (2)たたみ込みとハッシュに 基づくマッチング
「データ学習アルゴリズム」 第3章 複雑な学習モデル 報告者 佐々木 稔 2003年6月25日 3.1 関数近似モデル
第3章 線形回帰モデル 修士1年 山田 孝太郎.
情報経済システム論:第13回 担当教員 黒田敏史 2019/5/7 情報経済システム論.
サポートベクターマシン Support Vector Machine SVM
「ICAによる顔画像特徴量抽出とSVMを用いた表情認識」
京都大学 化学研究所 バイオインフォマティクスセンター
HMM音声合成における 変分ベイズ法に基づく線形回帰
ベイズ基準による 隠れセミマルコフモデルに基づく音声合成
パターン認識 ークラスタリングとEMアルゴリズムー 担当:和田 俊和 部屋 A513
パターン認識 ークラスタリングとEMアルゴリズムー 担当:和田 俊和 部屋 A513
九州大学大学院 情報学専攻特別講義 (8) ニューラルネットワークの 離散モデル
メソッドの同時更新履歴を用いたクラスの機能別分類法
奈良女子大集中講義 バイオインフォマティクス (7) 進化系統樹
九大数理談話会 複雑ネットワークと制御理論
モデルの微分による非線形モデルの解釈 明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌.
生命情報学 (8) 生物情報ネットワークの構造解析
阿久津 達也 京都大学 化学研究所 バイオインフォマティクスセンター
確率的フィルタリングを用いた アンサンブル学習の統計力学 三好 誠司 岡田 真人 神 戸 高 専 東 大, 理 研
集中講義(東京大学)「化学システム工学特論第3」 バイオインフォマティクス的手法による化合物の性質予測(1) バイオインフォマティクス概観
転移学習 Transfer learning
分子生物情報学(0) バイオインフォマティクス
混合ガウスモデル Gaussian Mixture Model GMM
教師がコミティマシンの場合のアンサンブル学習 三好 誠司(神戸高専) 原 一之(都立高専) 岡田 真人(東大,理研,さきがけ)
Presentation transcript:

分子生物情報学(7) 遺伝子発現データの情報解析法 スケールフリーネットワーク 阿久津 達也 京都大学 化学研究所 バイオインフォマティクスセンター

内容 遺伝子発現データ解析 遺伝子ネットワーク推定 腫瘍細胞分類 スケールフリーネットワーク

遺伝子発現データの解析 DNAチップ・DNAマイクロアレイ 遺伝子発現データ解析 多数の遺伝子の発現量を同時測定可能 クラスタリング どの遺伝子が似ているか? 遺伝子ネットワーク推定 どの遺伝子がどの遺伝子を制御しているか? 腫瘍細胞分類 腫瘍のより細かな分類、抗がん剤の適切投与

遺伝子ネットワーク推定

ネットワークモデル・推定手法 ブーリアンネットワーク 微分方程式系(線形・非線形) ニューロ型モデル 時系列解析 ベイジアンネットワーク グラフィカルモデリング

ブーリアンネットワークの例

状態遷移 状態遷移 アトラクター:同じ状態系列が繰り返される 初期状態が与えられれば、状態遷移表より、どのような変化がおきるかがわかる 011 ⇒ 010 ⇒ 101 ⇒ 010 ⇒ 101 ⇒ … 111 ⇒ 110 ⇒ 100 ⇒ 000 ⇒ 001 ⇒ 001 ⇒ 001 ⇒ …

ブーリアンネットワークの同定 時刻 t, t+1 の状態の組(遷移表の一部) ⇒ 例 例に無矛盾なネットーワークが一意かを判定 例は発現パターンの変化に相当

入次数 ネットワーク形状に制約が無い場合 入次数が定数 K 以下 ⇒状態遷移表の全部の行( )行が必要 ⇒状態遷移表の全部の行(   )行が必要 入次数が定数 K 以下 ⇒(全部で2n 行あるうちの)たったO(log n)行で十分

ベイジアンネットワーク 条件付き確率で知識やネットワークを表現 AI分野で数多くの研究 グラフィカルモデリングと深い関係 ブーリアンネットワークとは異なり、時間を陽には取り扱わない

線形微分方程式系の推定 (D’haeseleer et al. 1999) 微分方程式を離散化 ⇒ 連立一次方程式 ⇒ 回帰分析 時系列データが既知なら、Xi (t)やΔt などは定数を考えることができる

S-system 例

実データ解析における問題点 時間間隔の長い(数十分以上)、数点から数十点程度のデータしか利用できない 正確な発現量を測定できるわけではなく、 同じ測定を行っても数十%の差 同じような時間変化を示す遺伝子が多い  (数百が同じような変化)

遺伝子発現データを用いた 腫瘍細胞分類 発現データを観測することにより、腫瘍細胞の詳細な分類を行う 抗がん剤の適切な投与などに応用できる可能性

Eric Landerらの研究I (1999) 急性白血病の分類 6800個程度の遺伝子の発現データを利用 72サンプル ALL (acute lymphoblastic leukemias) AML (acute myeloid leukemias)

Eric Landerらの研究II 急性白血病のデータ(Golub et al, 1999) 38+34の患者の6817遺伝子の発現量を  AffymetrixのDNAチップで計測 ALL と AML のクラス分け B-CELL ALL と T-CELL ALL のクラス分け 多数決により決定(ただし、差が少ない場合には判定不能とする)

Eric Landerらの研究III クラス予測 クラス発見 Informative Gene 与えられたデータがどの既知クラスに入るかを推定 (重み付き)多数決により推定 クラス発見 新たな腫瘍のタイプを発見 自己組織化マップ(クラスタリング技法の一種)を利用 Informative Gene クラス予測に有用な遺伝子セット クラス分けとの相関に基づき選択 Feature Selection (AI分野で数多くの研究)

サポートベクタマシン 分類のための学習方式 特徴 バイオインフォマティクスにおいても既に様々な応用 正負の例(トレーニングデータ)からマージンを最大化するパラメータを学習 過学習を起こしにくい 様々なカーネルを利用可能 二次計画法を利用(最適性の保証) バイオインフォマティクスにおいても既に様々な応用

SVMによる腫瘍細胞分類(クラス予測) ALLを正例、AMLを負例として与えて、超平面を学習

発現データからの細胞分類 遺伝子1 遺伝子2 遺伝子3 遺伝子4 遺伝子5 遺伝子6 タイプ Sample1 1.1 4.5 4.1 2.1 0.4 4.3 ALL Sample2 2.2 2.6 5.0 5.3 0.5 3.4 Sample3 1.3 4.8 2.5 3.9 0.8 Sample4 4.6 0.3 3.5 Sample5 0.9 0.2 2.7 3.7 AML Sample6 3.0 2.8 1.2 Sample7 1.7 3.1 4.2 実際には発現量はアナログ値 (遺伝子2の発現量)+(遺伝子3の発現量)+(遺伝子4の発現量)>10.0   ⇒ALL と推定

スケールフリーネットワーク Barabasi らが1999年頃に発見。以降、数多くの研究 特徴: 有力な頂点(ハブ)に多くの頂点が連結 特徴: 有力な頂点(ハブ)に多くの頂点が連結 現実のネットワークの多くが該当 代謝ネットワーク、タンパク質相互作用、WWW、電力網、... 次数 k の頂点の個数が k -γに比例(べき乗則) ランダムな場合(ポアソン分布: e-λλk/k!)と大差

 グラフと生物情報ネットワーク 代謝ネットワーク (KEGG) グラフ ・点と線で構造を表す

 スケールフリーネットワーク 頂点数 頂点数 ∝ (次数)-3 次数

スケールフリーネットワークの構成法(1) Preferential Attachment [Barabasi & Albert 1999]  スケールフリーネットワークの構成法(1) Preferential Attachment [Barabasi & Albert 1999] 別名: Rich-get-richer モデル 構成法(ほぼ、k -3 のべき乗則従うネットワークを生成) m0 個の頂点から成るグラフを構成する 以下のステップを必要なだけ繰り返す 現在のグラフに新たな頂点 v を追加する v から既存の頂点に、deg(vi)/(Σj deg(vj)) に従う確率で、ランダムに辺を張る(全部で m 本の辺を張る) m0=4 m=3

 スケールフリーネットワークの構成法(2) Hierarchical Scale-Free Network [Ravasz, Barabasi et al. 2002] 別名:Deterministic Scale-Free Network 再帰的に構成 フラクタル的

参考文献 遺伝子ネットワーク推定 発現データを用いた細胞分類 サポートベクタマシン スケールフリーネットワーク 北野 編: システムバイオロジーの展開、シュプリンガー・フェアラーク東京 (2001) 発現データを用いた細胞分類 Golub et al.: Science, 286, 531 (1999) サポートベクタマシン Cristianini, Shawe-Taylor: Support Vector Machines, Cambridge Univ. Press (2000) スケールフリーネットワーク A.-L. Barabasi and Z.N. Oltvai, Nature Genetics Reviews 5, 101 (2004). Barabasi のホームページ: http://www.nd.edu/~alb/