細胞と多様性の 生物学 第6回 細胞間の情報交換 和田 勝 東京医科歯科大学教養部.

Slides:



Advertisements
Similar presentations
生物学 第4回 多様な細胞の形と働きは      タンパク質のおかげ 和田 勝.
Advertisements

環境表面科学講義 村松淳司 村松淳司.
生命科学特論B 第2回 神経による制御機構 和田 勝 東京医科歯科大学教養部.
1
脂質代謝.
生物学 第8回 代謝経路のネットワーク 和田 勝.
脂質 細胞や組織から無極性有機溶媒で抽出することにより単離される天然有機化合物 エステル結合を有し,加水分解できるもの 脂肪,ワックスなど
特論B 細胞の生物学 第2回 転写 和田 勝 東京医科歯科大学教養部.
金箔にα線を照射して 通過するα線の軌跡を調べた ラザフォードの実験 ほとんどのα線は通過 小さい確率ながら跳ね返ったり、
生物学基礎 第4回 細胞の構造と機能と      細胞を構成する分子  和田 勝 東京医科歯科大学教養部.
動物への遺伝子導入 hGH 遺伝子 右:ひと成長ホルモン遺伝子を 導入したラット 左:対照ラット
活性化エネルギー.
脂肪の消化吸収 【3】グループ   ~
HPLCにおける分離と特徴 ~逆相・順相について~ (主に逆相です)
栄養と栄養素 三大栄養素 炭水化物(糖質・繊維) 脂質 たんぱく質 プラス五大栄養素 ビタミン 無機質.
好気呼吸 解糖系 クエン酸回路 水素伝達系.
代謝経路の有機化学 細胞内で行われている反応→代謝 大きな分子を小さな分子に分解→異化作用 第一段階 消化→加水分解
緩衝作用.
8章 食と健康 今日のポイント 1.食べるとは 何のために食べるのか? 食べたものはどうなるのか? 2.消化と吸収 3.代謝の基本経路
生物学 第13回 個体としてのまとまり 和田 勝.
3)たんぱく質中に存在するアミノ酸のほとんどが(L-α-アミノ酸)である。
・神経 続き シナプス 神経伝達物質 ・ホルモン ホルモンの種類 ホルモン受容体 ホルモンの働き
生命科学基礎C 第5回 早い神経伝達と遅い神経伝達 和田 勝 東京医科歯科大学教養部.
生命科学基礎C 第3回 神経による筋収縮の指令 -ニューロン 和田 勝 東京医科歯科大学教養部.
個体と多様性の 生物学 第10回 神経伝達とその修飾 和田 勝 東京医科歯科大学教養部.
生体分子を構成している元素 有機分子   C, H, O, N, P, S(C, H, O, N で99%) 単原子イオン 
* 研究テーマ 1.(抗)甲状腺ホルモン様作用を評価するバイオアッセイ系の確立 2.各種化学物質による(抗)甲状腺ホルモン様作用の検討
生物学 第15回 愛は神経とホルモンに乗って 和田 勝.
生命科学基礎C 第4回 神経による筋収縮の指令 -伝達 和田 勝 東京医科歯科大学教養部.
個体と多様性の 生物学 第6回 体を守る免疫機構Ⅰ 和田 勝 東京医科歯科大学教養部.
静止膜電位の成り立ちと活動電位の発生 等価回路 モデル ゴールドマン の式
微粒子合成化学・講義 村松淳司
コレステロール その生合成の調節について 家政学部 通信教育課程 食物学科 4年 大橋 万里子 佐藤 由美子 鷲見 由紀子 堀田 晴 子
高脂血症の恐怖 胃 基礎細胞生物学 第14回(1/22) 2. 胃酸の分泌 1. 胃 3. 消化管(小腸)上皮細胞の更新
一分子で出来た回転モーター、F1-ATPaseの動作機構 ーたんぱく質の物理ー
1. イントロダクション:溶液中における構造不均一性の形成と拡散
生命科学特論B 第5回 感覚情報はどのように浮け取られる 和田 勝 東京医科歯科大学教養部.
細胞と多様性の 生物学 第7回 細胞外からの情報が核に伝わる 和田 勝 東京医科歯科大学教養部.
膜タンパク質の 立体構造予測.
生命科学特論B 第3回 神経系と内分泌系の接点 和田 勝 東京医科歯科大学教養部.
2 物質の膜透過機構  吸収・分布・代謝・排泄の過程は、生体膜を透過することが基本.
特論B 細胞の生物学 第5回 エネルギー代謝 和田 勝 東京医科歯科大学教養部.
生命科学基礎C 第8回 免疫Ⅰ 和田 勝 東京医科歯科大学教養部.
生命科学特論B 第4回 神経伝達方式の違いと行動の変容 和田 勝 東京医科歯科大学教養部.
Central Dogma Epigenetics
1月19日 シグナル分子による情報伝達 シグナル伝達の種類 ホルモンの種類 ホルモン受容体 内分泌腺 ホルモンの働き.
生命科学基礎C 第1回 ホルモンと受容体 和田 勝 東京医科歯科大学教養部.
膜タンパク質のインフォマテイクス 必要とされている課題.
カルビンーベンソン回路 CO23分子が回路を一回りすると 1分子のC3ができ、9分子のATPと 6分子の(NADH+H+)消費される.
生物学特論B 第1回 多細胞生物の個体の調節 和田 勝 東京医科歯科大学教養部.
生命科学基礎C 第6回 シナプス伝達の修飾 和田 勝 東京医科歯科大学教養部.
個体と多様性の 生物学 第6回 体を守る免疫機構Ⅰ 和田 勝 東京医科歯科大学教養部.
嗅覚仮説:サケは嗅覚によって川のニオイを嗅ぎ分けて母川に回帰する
生物学 第7回 エネルギー代謝 和田 勝.
細胞の膜構造について.
1.細胞の構造と機能の理解 2.核,細胞膜,細胞内小器官の構造と機能の理解 3.細胞の機能,物質輸送の理解 4.細胞分裂過程の理解
ギャップ結合の機能評価 H27.8.1 体験学習.
化学1 第12回講義        玉置信之 反応速度、酸・塩基、酸化還元.
●食物の消化と吸収 デンプン ブドウ糖 (だ液中の消化酵素…アミラーゼ) (すい液中の消化酵素) (小腸の壁の消化酵素)
Department of Neurogenomics
個体と多様性の 生物学 第11回 外界の刺激の受容 和田 勝 東京医科歯科大学教養部.
・神経とは ・神経細胞の発生 ・神経細胞の構造 ・膜電位生成 ・伝導のしくみ
学習目標 1.細胞の構造と機能の理解 2.核,細胞膜,細胞内小器官の構造と機能の理解 3.細胞の機能,物質輸送の理解 4.細胞分裂過程の理解
物質とエネルギーの変換 代謝 生物体を中心とした物質の変化      物質の合成、物質の分解 同化  複雑な物質を合成する反応 異化  物質を分解する反応 
好気呼吸 解糖系 クエン酸回路 電子伝達系.
特論B 細胞の生物学 第6回 エネルギーはどこから 和田 勝 東京医科歯科大学教養部.
細胞の構造と機能.
細胞膜受容体-天然物リガンド間架橋に最適化した架橋法の開発
⑥ ⑤ ① ③ ② ④ 小胞の出芽と融合 11/20 ATPの使い途2 出芽 核 細胞質 供与膜 融合 標的膜 リソソーム
好気呼吸 解糖系 クエン酸回路 電子伝達系.
Presentation transcript:

細胞と多様性の 生物学 第6回 細胞間の情報交換 和田 勝 東京医科歯科大学教養部

今回のお話の舞台

細胞膜の構造 電子顕微鏡で観察すると、上の写真のように二重の膜である。

細胞膜の構成要素 脂質とタンパク質から構成される。 脂質は以下のように分類できる 単純脂質 複合脂質 誘導脂質 トリアシルグリセロールなどの中性脂肪 単純脂質 複合脂質 グリセロリン脂質、グリセロ糖脂質など 誘導脂質

中性脂肪 O R1-C O- O R2-C O- H H-C-OH H + O R3-C O- H O O H-C-O-C-R1 炭化水素 の鎖。途中に二重結合を含むこともある。    H  O   O H-C-O-C-R1 R2-C-O-C-H    H-C-O-C-R3     H O

リン脂質(phospholipid) フォスファチド(phosphatide)とも言う H O O H-C-O-C-R1 R2-C-O-C-H O    H-C-O-P-O-X     H O- X=コリン、セリン、エタノールアミン、   イノシトールなど

フォスファチジルコリン O H R1-C-O-C-H O CH3 H-C-O-P-O-CH2-CH2-N+-CH3 細胞膜の主要な成分

フォスファチジルコリン 頭部 極性 尾部 非極性 のように簡単にあらわすことができる

フォスファチジルコリンを フォスファチジルコリンをぎっしり並べると、、、

脂質の二重膜 水分子 脂質 二重膜 lipid bilayer

脂質二重膜の性質 疎水性分子 極性のある 小分子 大分子 イオンや電荷を持つ分子 N2、O2、炭化水素 自由に透過 分子の性質 例 透過性 疎水性分子 N2、O2、炭化水素 自由に透過 極性のある 小分子 H2O、CO2、グリセロール、尿素 大分子 ブドウ糖などの単糖類、二糖類 透過できない イオンや電荷を持つ分子 アミノ酸、H+、HCO3-、Na+、K+、Ca2+、Cl-、Mg2+

浸透圧 1.溶媒(水)と溶媒+溶質(水溶液)を入れる 3.時間が経つと、両側の濃度は同じになる 2.水も溶質も自由に行き来できるので、溶質は拡散によってしだいに左側へ移動 全透膜

浸透圧 3.半透膜にかかる圧力と水の移動しようとする力がつりあう 1.水と水溶液を入れる 2.水は半透膜を通って移動できるが溶質はできない 4.この圧力が溶液の浸透圧に該当する 半透膜

浸透圧 この圧力をかけておけば、浸透はおこらない 半透膜

脂質二重膜の性質 水のような溶媒分子は自由に通すが溶質は通さない膜を、半透膜 (semipermeable membrane)という。 浸透圧溶血(hemolysis)は、赤血球膜のこのような性質で説明できる。 溶血の原因は、この他免疫性溶血や毒素などによる溶血など、多岐にわたる

浸透圧溶血 高張(hypertonic) 低張(hypotonic) 等張(isotonic) 赤血球 水 破裂 縮む 変化なし

選択透過性 しかしながら、半透膜の性質だけでは細胞は生きていけない。 細胞の活動にとって必要なグルコースの取り込み、タンパク質合成の原料となるアミノ酸の取り込みなど。 そのための通り道が、タンパク質でつくられている。その結果、選択透過性(selective permeability)が生じる

膜タンパク質 細胞膜に埋め込まれたタンパク質を、とくに膜タンパク質と呼ぶ。 膜タンパク質の膜貫通部はαヘリックス構造で、脂質二重膜と接する部分の側鎖は疎水性。 αヘリックス構造が何本か束ねられた構造をとる場合が多い。

脂質二重膜とタンパク質 親水部 αヘリックス 疎水部 親水部

細胞膜のモデル 脂質二重膜に膜タンパク質が浮かんでいる(流動モザイクモデル)

細胞膜のモデル 膜タンパク質の性質によって、細胞膜の性質が決まる。 脂質二重膜は海のようなもので、タンパク質は氷山のように浮かんでいて、動くことができる。

細胞膜のモデル 膜タンパク質には、貫通型、表在型、一部埋め込み型がある。 アクチンフィラメントは、表在型タンパク質を介して貫通型タンパク質と結合できる。 膜タンパク質の外に面した部分からは、糖鎖が出ていることが多い。

細胞膜のモデル 脂質二重膜が流動性を示すのは、脂質分子が移動できるからである。 コレステロールが埋め込まれると、膜の流動性が減少する。 グリセロリン脂質以外にも、細胞膜を構成する脂質がある(セラミドなど)が今は省略する。

細胞内顆粒の分泌 開口分泌(exocytosis)は、顆粒膜と細胞膜の融合による。膜タンパク質も 食細胞運動(phagocytosis)はこの過程の逆で、大きな物質はこうして細胞内に取り込まれる。

貫通型膜タンパク質の種類 1.細胞間の接着・結合に関するもの 2.チャンネルタンパク質 3.運搬タンパク質 エネルギーを必要としない場合と   エネルギーを必要としない場合と   必要な場合がある 4.受容体タンパク質

細胞間の結合 細胞は独立しているのではない

密着結合 細胞同士を結合タンパク質がしっかり繋ぎ合わせている

密着結合 密着結合のおかげで、膜に区画(compartment)が生まれる。

接着結合

デスモゾーム結合

ヘミデスモゾーム結合 デスモゾームの半分が基底層のタンパク質と結合している

ギャップ結合 ギャップ結合のおかげで、細胞同士が電気的に結合できる。

発生における接着の役割 神経管の発生の過程では

神経管分化とカドヘリン 場所によって異なるカドヘリンタンパク質が発現する その結果、細胞のソーティングがおこる

膜貫通部はすべて非極性アミノ酸であることに注意 E-カドヘリンの一次構造 1 11 21 31 41 51 1 MGPWSRSLSA LLLLLQVSSW LCQEPEPCHP GFDAESYTFT VPRRHLERGR VLGRVNFEDC 60 61 TGRQRTAYFS LDTRFKVGTD GVITVKRPLR FHNPQIHFLV YAWDSTYRKF STKVTLNTVG 120 121 HHHRPPPHQA SVSGIQAELL TFPNSSPGLR RQKRDWVIPP ISCPENEKGP FPKNLVQIKS 180 181 NKDKEGKVFY SITGQGADTP PVGVFIIERE TGWLKVTEPL DRERIATYTL FSHAVSSNGN 240 241 AVEDPMEILI TVTDQNDNKP EFTQEVFKGS VMEGALPGTS VMEVTATDAD DDVNTYNAAI 300 301 AYTILSQDPE LPDKNMFTIN RNTGVISVVT TGLDRESFPT YTLVVQAADL QGEGLSTTAT 360 361 AVITVTDTND NPPIFNPTTY KGQVPENEAN VVITTLKVTD ADAPNTPAWE AVYTILNDDG 420 421 GQFVVTTNPV NNDGILKTAK GLDFEAKQQY ILHVAVTNVV PFEVSLTTST ATVTVDVLDV 480 481 NEAPIFVPPE KRVEVSEDFG VGQEITSYTA QEPDTFMEQK ITYRIWRDTA NWLEINPDTG 540 541 AISTRAELDR EDFEHVKNST YTALIIATDN GSPVATGTGT LLLILSDVND NAPIPEPRTI 600 601 FFCERNPKPQ VINIIDADLP PNTSPFTAEL THGASANWTI QYNDPTQESI ILKPKMALEV 660 661 GDYKINLKLM DNQNKDQVTT LEVSVCDCEG AAGVCRKAQP VEAGLQIPAI LGILGGILAL 720 721 LILILLLLLF LRRRAVVKEP LLPPEDDTRD NVYYYDEEGG GEEDQDFDLS QLHRGLDARP 780 781 EVTRNDVAPT LMSVPRYLPR PANPDEIGNF IDENLKAADT DPTAPPYDSL LVFDYEGSGS 840 841 EAASLSSLNS SESDKDQDYD YLNEWGNRFK KLADMYGGGE DD 赤はシグナルペプチド領域、青は膜貫通部 膜貫通部はすべて非極性アミノ酸であることに注意

カドヘリンとアクチン カドヘリンはサイトゾール部でカテニンを介してアクチンと結合している

膜タンパク質の発現により このように、細胞表面の接着・結合に関するタンパク質が発現することにより、細胞膜の性質が変化する。 こうして細胞間での選別が行なわれ、分化がおこる。

チャンネルと運搬タンパク質 どうして特定のイオンや物質だけを通す選択性が生じるか、不明な点も多い

K+-チャンネル K+は水和している→水和が外れて ポアに入り、フィルター部を通って抜ける

スクロースポーリン Salmonella typhimurium

チャンネルンパク質 電位依存型 K+チャンネル 電位センサー

受動輸送と能動輸送

受容体タンパク質の役割

途中のまとめ ここまで、細胞の外側を包んでいる細胞膜について、いろいろなことを学んだ。ここまでで細胞の基本的な構造と機能を学んだ。  ここまで、細胞の外側を包んでいる細胞膜について、いろいろなことを学んだ。ここまでで細胞の基本的な構造と機能を学んだ。  細胞は孤立しているのではないので、細胞間の情報交換が必要である。

細胞間の情報交換 ヒトとヒトの間の情報交換の主な手段は言語で、それぞれの単語に意味がある。 生体では、この単語にあたるのが分子で、ここではこれを信号分子(signal molecule)と呼ぼう。

細胞間の情報交換 ギャップジャンクション 膜表面上分子が直接 情報分子を分泌

信号分子による情報交換 神経軸索末端から 周囲の細胞間隙へ 血液中へ

ホルモンによる情報交換 細胞がホルモンによる情報を受け取ることができるのは、そのホルモンに対する受容体(receptor)を持つから。 標的器官(細胞)(target organ, target cell) ホルモンの分類 分泌器官による はたらきによる 化学的性質による

ホルモンを 化学的性質によって分類 ポリペプチドホルモン、アミン系ホルモン 細胞膜を通過できない ステロイド系ホルモン、甲状腺ホルモン  化学的性質によって分類 ●水溶性(hydrophilic) ポリペプチドホルモン、アミン系ホルモン 細胞膜を通過できない ●非水溶性(hydrophobic)、脂溶性(lipophilic) ステロイド系ホルモン、甲状腺ホルモン 細胞膜を通過できる

受容体のある場所 ポリペプチドホルモンに対しては細胞表面 ステロイドホルモンに対しては細胞質内

水溶性ホルモンの作用機構 細胞表面の受容体には ①イオンチャンネル連結型受容体(channel- linked receptors) ②酵素連結型受容体(catalytic receptors) ③Gタンパク質連結型型受容体(G protein-  coupled receptors、GPCR) インシュリンは②だったが、ここでは③のGタンパク質連結型受容体について述べよう。

繁殖に関するホルモン 視床下部-脳下垂体-生殖腺系 (hypothalamo-hypophysial-ganadal axis) GnRH: ゴナドトロピン放出ホルモン LH: 黄体形成ホルモン

Gタンパク質連結型受容体 たとえばこれまで学習したGnRHの受容体は ヒトGnRHは pEHWSYGLRPG-NH2 1 11 21 31 41 51   1 MANSASPEQN QNHCSAINNS IPLMQGNLPT LTLSGKIRVT VTFFLFLLSA TFNASFLLKL 60  61 QKWTQKKEKG KKLSRMKLLL KHLTLANLLE TLIVMPLDGM WNITVQWYAG ELLCKVLSYL 120 121 KLFSMYAPAF MMVVISLDRS LAITRPLALK SNSKVGQSMV GLAWILSSVF AGPQLYIFRM 180 181 IHLADSSGQT KVFSQCVTHC SFSQWWHQAF YNFFTFSCLF IIPLFIMLIC NAKIIFTLTR 240 241 VLHQDPHELQ LNQSKNNIPR ARLKTLKMTV AFATSFTVCW TPYYVLGIWY WFDPEMLNRL 300 301 SDPVNHFFFL FAFLNPCFDP LIYGYFSL ヒトGnRHは pEHWSYGLRPG-NH2

Gタンパク質連結型受容体 LHの受容体は ヒトLH受容体(赤い部分はシグナルペプチド、 青い部分は膜貫通ドメイン)   青い部分は膜貫通ドメイン)        1          11          21          31          41          51     1 MKQRFSALQL LKLLLLLQPP LPRALREALC PEPCNCVPDG ALRCPGPTAG LTRLSLAYLP    60   61 VKVIPSQAFR GLNEVIKIEI SQIDSLERIE ANAFDNLLNL SEILIQNTKN LRYIEPGAFI   120   121 NLPGLKYLSI CNTGIRKFPD VTKVFSSESN FILEICDNLH ITTIPGNAFQ GMNNESVTLK   180   181 LYGNGFEEVQ SHAFNGTTLT SLELKENVHL EKMHNGAFRG ATGPKTLDIS STKLQALPSY   240   241 GLESIQRLIA TSSYSLKKLP SRETFVNLLE ATLTYPSHCC AFRNLPTKEQ NFSHSISENF   300   301 SKQCESTVRK VSNKTLYSSM LAESELSGWD YEYGFCLPKT PRCAPEPDAF NPCEDIMGYD  360   361 FLRVLIWLIN ILAIMGNMTV LFVLLTSRYK LTVPRFLMCN LSFADFCMGL YLLLIASVDS  420   421 QTKGQYYNHA IDWQTGSGCS TAGFFTVFAS ELSVYTLTVI TLERWHTITY AIHLDQKLRL  480   481 RHAILIMLGG WLFSSLIAML PLVGVSNYMK VSICFPMDVE TTLSQVYILT ILILNVVAFF  540   541 IICACYIKIY FAVRNPELMA TNKDTKIAKK MAILIFTDFT CMAPISFFAI SAAFKVPLIT   600   601 VTNSKVLLVL FYPINSCANP FLYAIFTKTF QRDFFLLLSK FGCCKRRAEL YRRKDFSAYT  660   661 SNCKNGFTGS NKPSQSTLKL STLHCQGTAL LDKTRYTEC

Gタンパク質連結型受容体 7個の膜貫通ドメインをもつ

Gタンパク質連結型受容体

Gタンパク質連結型受容体 活性化したGタンパク質は、標的酵素である アデニル酸シクラーゼを活性化 活性化したアデニル酸シクラーゼはATPから 環状アデノシンモノリン酸(cAMP)を生成

Gタンパク質連結型受容体 cAMPは細胞質中にあるcAMP依存性タンパク質キナーゼ(Aキナーゼ)と結合して、この酵素を 活性化する 活性化された酵素は次の酵素を活性化 多段階カスケード反応によって増幅される

Gタンパク質連結型受容体 ホルモン(アドレナリン)

Gタンパク質連結型受容体2 連結するGタンパク質が異なる場合もある

脂溶性ホルモンの作用機構

脂溶性ホルモンの作用機構 ステロイドホルモンのかたち テストステロン(Ball & Stick model)    赤:酸素、灰色:炭素、白:水素 右はテストステロン分子を横から見たもの

脂溶性ホルモンの作用機構 ラットアンドロジェン受容体(青い部分はDNA結合ドメイン、 赤い部分はホルモン結合ドメイン) 1 11 21 31 41 51  1 MEVQLGLGRV YPRPPSKTYR GAFQNLFQSV REAIQNPGPR HPEAASIAPP GACLQQRQET 60 61 SPRRRRRQQH PEDGSPQAHI RGTTGYLALE EEQQPSQQQS ASEGHPESGC LPEPGAATAP 120 121 GKGLPQQPPA PPDQDDSAAP STLSLLGPTF PGLSSCSADI KDILSEAGTM QLLQQQQQQQ 180 181 QQQQQQQQQQ QQQQQEVISE GSSSVRAREA TGAPSSSKDS YLGGNSTISD SAKELCKAVS 240 241 VSMGLGVEAL EHLSPGEQLR GDCMYASLLG GPPAVRPTPC APLAECKGLS LDEGPGKGTE 300 301 ETAEYSSFKG GYAKGLEGES LGCSGSSEAG SSGTLEIPSS LSLYKSGAVD EAAAYQNRDY 360 361 YNFPLALSGP PHPPPPTHPH ARIKLENPSD YGSAWAAAAA QCRYGDLASL HGGSVAGPST 420 421 GSPPATASSS WHTLFTAEEG QLYGPGGGGG SSSPSDAGPV APYGYTRPPQ GLASQEGDFS 480 481 ASEVWYPGGV VNRVPYPSPS CVKSEMGPWM ENYSGPYGDM RLDSTRDHVL PIDYYFPPQK 540 541 TCLICGDEAS GCHYGALTCG SCKVFFKRAA EGKQKYLCAS RNDCTIDKFR RKNCPSCRLR 600 601 KCYEAGMTLG ARKLKKLGNL KLQEEGENSS AGSPTEDPSQ KMTVSHIEGY ECQPIFLNVL 660 661 EAIEPGVVCA GHDNNQPDSF AALLSSLNEL GERQLVHVVK WAKALPGFRN LHVDDQMAVI 720 721 QYSWMGLMVF AMGWRSFTNV NSRMLYFAPD LVFNEYRMHK SRMYSQCVRM RHLSQEFGWL 780 781 QITPQEFLCM KALLLFSIIP VDGLKNQKFF DELRMNYIKE LDRIIACKRK NPTSCSRRFY 840 841 QLTKLLDSVQ PIARELHQFT FDLLIKSHMV SVDFPEMMAE IISVQVPKIL SGKVKPIYFH 900 901 TQ

脂溶性ホルモンの作用機構 ラットアンドロジェン受容体のホルモン 結合部分の構造模型 細胞質受容体 スーパーファミリー

DNAとタンパク質の相互作用

DNAとタンパク質の相互作用 結合する タンパク質 水素 結合

DNAとタンパク質の相互作用 ホメオドメインタンパク質 ロイシン ジッパー ジンク フィンガー

脂溶性ホルモンの作用機構 Znフィンガー ホルモン応答エレメント(HRE) 5’-AGGTCAnnnTGACCT-3’

脂溶性ホルモンの作用機構 ステロイドホルモンが受容体に結合 HspがはずれてDNA結合部位が露出 ニ量体となってDNAのHREに結合 下流の遺伝子の転写を促進 タンパク質合成

信号分子による情報 このように、信号分子が外から働きかけることにより、細胞内の代謝経路が動き出したり、変化が起こる。 あるいは、信号分子が細胞内へ入り、新しくタンパク合成を誘導して細胞の性質を変える。