形式言語とオートマトン2008 ー有限オートマトンー

Slides:



Advertisements
Similar presentations
プログラミング言語論 第3回 BNF 記法について(演習付き) 篠埜 功. 構文の記述 プログラミング言語の構文はどのように定式化できるか? 例1 : for ループの中に for ループが書ける。 for (i=0; i
Advertisements

プログラミング言語論 第10回(演習) 情報工学科 木村昌臣   篠埜 功.
文法と言語 ー字句解析とオートマトンlexー
コンパイラ 2011年10月17日
形式言語とオートマトン2014 ー有限オートマトンー 第3日目
計算の理論 I 決定性有限オートマトン(DFA) と 非決定性有限オートマトン(NFA)
5.チューリングマシンと計算.
5.チューリングマシンと計算.
計算の理論 I ー DFAとNFAの等価性 ー 月曜3校時 大月 美佳.
東京工科大学 コンピュータサイエンス学部 亀田弘之
計算の理論 II 文脈自由文法と プッシュダウンオートマトン
形式言語とオートマトン2011 ー有限オートマトンー 第3日目
コンパイラ 2012年10月15日
第2章 「有限オートマトン」.
形式言語とオートマトン2013 ー有限オートマトンー 第5日目
形式言語とオートマトン Formal Languages and Automata 第4日目
形式言語とオートマトン Formal Languages and Automata 第4日目
東京工科大学 コンピュータサイエンス学部 亀田弘之
プログラミング言語論 第3回 BNF記法について(演習付き)
正則言語 2011/6/27.
文法と言語 ー字句解析とオートマトンlexー
形式言語とオートマトン2012 ー有限オートマトンー 第3日目
文法と言語 ー字句解析とオートマトンlexー
形式言語の理論 5. 文脈依存言語.
東京工科大学 コンピュータサイエンス学部 亀田弘之
計算の理論 I -Myhill-Nerodeの定理 と最小化-
計算の理論 I ー 正則表現(今度こそ) ー 月曜3校時 大月 美佳.
計算の理論 I ー 正則表現 ー 月曜3校時 大月 美佳.
形式言語とオートマトン Formal Languages and Automata 第4日目
形式言語とオートマトン2017 ー有限オートマトンー 第3日目
計算の理論 I -Myhill-Nerodeの定理 と最小化-
平成20年10月5日(月) 東京工科大学 コンピュータサイエンス学部 亀田弘之
計算の理論 II 前期の復習 -有限オートマトン-
計算の理論 I ε-動作を含むNFA 月曜3校時 大月 美佳.
計算の理論 I ε-動作を含むNFA 月曜3校時 大月 美佳 平成15年6月2日 佐賀大学知能情報システム学科.
計算の理論 I 正則表現とFAとの等価性 月曜3校時 大月 美佳 平成15年6月16日 佐賀大学知能情報システム学科.
東京工科大学 コンピュータサイエンス学部 亀田弘之
東京工科大学 コンピュータサイエンス学部 亀田弘之
2007年度 情報数理学.
東京工科大学 コンピュータサイエンス学部 亀田弘之
形式言語とオートマトン 中間試験解答例 2016年11月15実施 中島毅.
平成26年4月22日(火) 東京工科大学 コンピュータサイエンス学部 亀田弘之
計算の理論 I ー正則表現とFAの等価性 その1ー
計算の理論 I 決定性有限オートマトン(DFA) と 非決定性有限オートマトン(NFA)
東京工科大学 コンピュータサイエンス学部 亀田弘之
形式言語とオートマトン2013 ー有限オートマトンー 第3日目
計算の理論 I 非決定性有限オートマトン(NFA)
5.チューリングマシンと計算.
計算の理論 I -プッシュダウンオートマトン-
計算の理論 I ー正則表現とFAの等価性ー 月曜3校時 大月 美佳.
計算の理論 I プッシュダウンオートマトン 火曜3校時 大月 美佳 平成16年7月6日 佐賀大学知能情報システム学科.
東京工科大学 コンピュータサイエンス学部 亀田弘之
形式言語とオートマトン 第14回 プッシュダウンオートマトンと全体のまとめ
形式言語とオートマトン2015 ー有限オートマトンー 第3日目
文法と言語 ー字句解析とオートマトンlexー
4.プッシュダウンオートマトンと 文脈自由文法の等価性
計算の理論 I NFAとDFAの等価性 火曜3校時 大月 美佳 平成16年5月18日 佐賀大学理工学部知能情報システム学科.
東京工科大学 コンピュータサイエンス学部 亀田弘之
東京工科大学 コンピュータサイエンス学部 亀田弘之
計算の理論 I ー 正則表現 ー 月曜3校時 大月 美佳.
東京工科大学 コンピュータサイエンス学部 亀田弘之
コンパイラ 2012年10月11日
形式言語とオートマトン2016 ー有限オートマトンー 第4日目
計算の理論 I ε-動作を含むNFAと等価なDFA
計算の理論 I ε-動作を含むNFA 火曜3校時 大月 美佳 平成16年5月25日 佐賀大学知能情報システム学科.
非決定性有限オートマトン 状態の有限集合 入力記号の有限集合 注意 動作関数 初期状態 受理状態の有限集合.
形式言語とオートマトン Formal Languages and Automata 第5日目
計算の理論 I ー ε-動作を含むNFA ー 月曜3校時 大月 美佳.
計算の理論 I プッシュダウンオートマトン 月曜3校時 大月 美佳 平成15年7月7日 佐賀大学知能情報システム学科.
東京工科大学 コンピュータサイエンス学部 亀田弘之
Presentation transcript:

形式言語とオートマトン2008 ー有限オートマトンー Tokyo University of Technology School of Computer Science

今日のポイント 有限オートマトン(復習・確認) 正規表現 正規表現とオートマトンの関係 最簡型オートマトンの作り方 (DFA -> min-DFA)

まずは、復習から

言語(文法)とオートマトン ---------------------------------------------------------------- 言   語   処 理 装 置 句構造言語(PSL) ⇔ Turing 機械 文脈依存言語(CSL) ⇔ 線形有界オートマトン 文脈自由言語(CFL) ⇔ プッシュダウンオートマトン 正規言語(RL) ⇔ 有限オートマトン まずはここからかじってみようかな 計算モデルやプログラミング言語設計に 深くかかわっています。

さて、…

有限オートマトンとは(復習) (英) Finite Automaton (FA)    finite automata (pl.)

いろいろなFA Finite Automaton Deterministic Finite Automaton (DFA) or Deterministic Finite State Machine Nondeterministic Finite Automaton (NFA) or Nondeterministic Finite State Machine NFA-ε or NFA with ε moves or NFA-lambda 英語も覚えましょう

決定性有限オートマトンの定義 DFA M = ( K, Σ, δ, q0, F ) ただし、 K : 状態の集合( Kは有限集合) Σ : 入力アルファベット(Σは有限集合) δ : 状態遷移関数 δ: K×Σ∋(qi , a ) → qj ∈ K q0 : 初期状態 F : 最終状態の集合 ( F ⊆ K )

例:決定性有限オートマトンM1 DFA M1 = ( K, Σ, δ, q0, F ) ただし、 K : { i, f, 1, 2, 3} Σ : { a, b } δ : 状態遷移関数 (次の頁参照) q0 : i F : { f }

状態遷移関数δ 状態 入力 a 入力 b i 1 ー 2 3 f

M1の状態遷移図 a b i a 1 a 2 a f b a b b 3

非決定性有限オートマトンの定義 NFA M = ( K, Σ, δ, q0, F ) ただし、 K : 状態の集合( Kは有限集合) Σ : 入力アルファベット(Σは有限集合) δ : 状態遷移関数 δ: K×Σ∋(qi, a ) → Q ⊂ K q0 : 初期状態 F : 最終状態の集合 ( F ⊆ K )

例:非決定性有限オートマトンM2 NFA M2 = ( K, Σ, δ, q0, F ) ただし、 K : { i, f1, f2, 1, 2 } Σ : { a, b } δ : 状態遷移関数 (次の頁参照) q0 : i F : { f1, f2 }

状態遷移関数δ 状態 入力a 入力b i i, 2 i, 1 1 ー f1 2 f2 - 非決定性

M2の状態遷移図 a, b a, b i a 2 a f2 b 1 a, b b f1

NFA M3の状態遷移図 a, b b i 2 f2 a a ε ε遷移(非決定性の要因) 1 a, b b f1

ここまでは定義の復習

もう少し具体例を 教科書の などを見なれること。図の意味(FAの動作)が 分かるようになりましょう。 図2.8 (p.37)

練習問題 次ページのFA(状態遷移図で記述されている)を、文章の形で記述してみてください。 つまり、FAを の5つ組として記述しなさい。 状態の集合 K 入力アルファベット Σ 状態遷移関数 δ:K×Σ → K (表形式でもOK) 初期状態 最終状態の集合F の5つ組として記述しなさい。

練習問題(続き) 教科書の それぞれ。 図2.8 (p.37) 問2.3 (p.39) 図2.9 (p.41) 問2.4 (p.43)  それぞれ。

新しい話に入りましょう! 正規表現 (regular expressions) 正規表現は文字列の集合を現すのに便利! CSにとっては常識です。

例えば、… 設定: 問題:ファイルを名前で探したい とあるディレクトリに以下のファイルがある ファイル名が file で始まるもの file1 file2 file3 infile1 infile12 outfile1 outfile2 tmpfile102 README123 問題:ファイルを名前で探したい ファイル名が file で始まるもの ファイル名に file が含まれているもの ファイル名が 2 で終わっているもの ファイル名末尾に3桁の数字が付いているもの こんなとき、正規表現が活躍する

(自由課題)調べてみよう Linuxでの ls コマンド Linuxでの grep コマンド or egrep コマンド などでの正規表現(メタ文字)はどうなっているか? (注)これらは、本授業で取り扱う正規表現とは少し異なっています。いわば拡張正規表現となっています。本授業の正規表現が、本来の正規表現です。 参考文献 ・詳説 正規表現, Jeffrey E. F. Friedl, O’Reilly Japan(2003).

これからの話の流れ

これからの話の流れ 正規表現 ー> NFA NFA ー> DFA DFA ー> 状態数最小DFA  (例で詳しく練習しますので、しっかり付いて 来てください。)

それでは正規表現の定義から

正規表現は、文字列の集合を表現・記述する。 正規表現は言語を記述する。 例えば、正規表現 a|b は 文字列 a と b の2つを意味する。 つまり。正規表現 a|b = { a, b } といった具合。

正規表現の例 文字 a だけからなる言語 { a } は正規表現で a と書く。 文字列 abc だけからなる言語 { abc } は正規表現で abc と書く。 言語 { aaa } は正規表現で aaa または a3 と書く。 言語 { a, b } は正規表現で a|b または a+b と書く。

正規表現の例(2) 言語 { a, aa, aaa, aaaa, aaaaa, …. } は 正規表現で a† と書く。(“a ダガー”と読む) 空文字列は正規表現の1つで、εと書く。 (“エプシロン”と読む) 言語 { ε, b, bb, bbb, bbbb, …} は正規表現で b* と書く。 (“b アスタリスク”とか“b スター”とか”b星印”などと読む) (参考) asterisk , epsilon

正規表現の定義 空文字列記号εは空文字列を意味する正規表現。 文字 x がアルファベットAの要素ならば、x は { x } を意味する正規表現。 RとSが正規表現ならば、正規表現 R | S あるいは R+S は正規表現Rの表す文字列の集合Aと正規表現Sが表す文字列の集合Bとの和集合。 正規表現 R・S あるいは RS は、Rの表す文字とSの表す文字とを連結した(その順に並べた)したものすべてからなる集合。 Rが正規表現ならば、 R*は、Rの表す文字をゼロ個以上連接した(並べた)ものすべてからなる集合。

正規表現の定義(再) アルファベットA上の正規表現とは、以下の規則によって作られるもの(表現)のことである。 空文字列εは正規表現である。 Aの要素 x ( x∈A ) は正規表現である。 RとSがともに正規表現ならば、 R|S  RS  R* はいずれも正規表現である。

練習:対応する言語は? abcd a* ab* (ab)* bc(2|4)* a†bcd*

例:A = { a, b, c } 上の正規表現 ε a c acb ab|b c(cb|a) a(a|b)*cba

練習:正規表現で書いてみよう { automaton } { file0, file1, file2, file3, …, filen, … } { ε, ab, aabb, aaabbb, aaaabbbb, … }

正規表現をFAで表現してみよう (注)このようなことができることは、証明されています。

R=ε ε 1 f1

2.R=a a 1 f1

3.R|S R 1 f1 S

4.RS 1 f1 R S

5.R* ε ε f1 1 ε R ε

練習 次の正規表現αをFAで表現しなさい。 α= a(a|b)*bb 教科書pp.143-147 参照のこと。

練習はまた次回の復習でやりましょう

次のそして今日最後の話し 状態数が少ないFAの存在とその求め方

M1の状態遷移図 a b i a 1 a 2 a f b a b b 3

M1が受理する文字列は? a b i a 1 a 2 a f b a b b 3

M1が受理する文字列は? 例えば、 (考えてみてください。)

M1と等価なFAの状態遷移図(No.2) a b i a 1,2 a f b a b 3

FA と L(G) との関係 正規文法G 正規言語L(G) 有限オートマトンM 1つのL(G)に対して、複数のFAがあり得る。

用語定義と問題提起 能力的に等価なFA群のうち、状態数が最も少ないものを、「最少化FA」あるいは「最簡形FA」と呼ぶことにしよう。   (注)このようなFAの存在はOKですよね。     Why?(考えてみてください。)

Myhill-Nerodeの定理 いま、受理・生成能力が同じFAの中で、状態数が最も少ないFA(最簡型FA)を求めたい。その理論的根拠を与えてくれるのが標記の定理である。 理論的にはとても重要な定理

Myhill-Nerode関係 定義: 到達不可能 ⇔ 初期状態から到達することのできないこと。そのような状態を到達不可能状態と呼ぶ。 ちょっとだけ覗いてみよう! Myhill-Nerode関係 定義: 到達不可能 ⇔ 初期状態から到達することのできないこと。そのような状態を到達不可能状態と呼ぶ。 定理: 到達不可能状態は、O( |K| |Σ| )で見出される。 定義: FAの2つの状態pとqが等価 ⇔[δ(p, w) ∈F ⇔δ(q,w)∈F for any w∈Σ*]

Myhill-Nerodeの定理 次の3つの命題は等価である。 アルファベットS上の言語LがDFAで認識される。 言語L に対し、関係RL は有限指標である。

この定理で得られる同値類に着目する [p]: pと等価な状態からなる集合(同値類) DFAに対する同値類オートマトン: Q’={[q]| q∈Q} Σ’=Σ q0’=[q0] F’={[q]| q∈F} δ’([q], a) = [δ(q,a)]

得られる知見 定理: 同値類オートマトンA’はもとのFA A’と同じ言語を受理する。 Myhill-Nerodeの定理を証明する際に、この同値類の作り方も得られる。その作り方が、最簡型DFA作成手順そのものとなっている。

こんな理屈もあるが、… 後日詳しくやりましょう。 いまは気にしないでおきましょう。

最簡化FAの求め方 いろいろ知られている。 わかりやすいものは以下のものです。

最簡型DFAを求める手順 重要 P0 = { F, K-F } 状態の集合Kを2つに分割する。 n=0とおく。 任意のnについて、Pnの細分化を行い、その結果を、Pn+1とする。 Pn = Pn+1 となりまで手順2を繰り返す。

具体例で練習しましょう 図2.18 (p.53)

今日はここまで。お疲れ様。 URL: http://kameken.clique.jp/ の右下を見てください。 次回は、今回までの復習と第3章です。 余力があったら予習してみてください。