2.地球を作る物質と化学組成 1)宇宙存在度と隕石 2)原始太陽系星雲でのプロセス:蒸発と凝縮

Slides:



Advertisements
Similar presentations
無機化学 I 後期 木曜日 2 限目 10 時半〜 12 時 化学専攻 固体物性化学分科 北川 宏 301 号室.
Advertisements

構造制御および電子状態制御に基づく新物質の開発 小さい HOMO-LUMO ギャップ 分子が自己集積すると同時にキャリアーが発生 強い三次元性 高い相転移温度 多フロンティアー  -d 系 M(tmdt) 2 M= Ni, Au, Cu, Pd, Pt pd  (-) asym-L  (d) sym-L.
物性工学概論 第2回 金属の話 (1) 佐藤勝昭. 講義計画 4/8 イントロ 4/15 改めてイントロ 金属の話 4/22 金はなぜ金ぴかか 金属の光学的性質 5/6 シリコンの金属光沢 半導体のバンド構造と光 5/13 青色 LED とレーザ 半導体の発光 5/20 太陽電池と光センサ 半導体の光起電力効果.
表、グラフ、 SmartArt の実習課題. 1月1月睦月 January 7月7月文月 July 2月2月如月 February 8月8月葉月 August 3月3月弥生 March 9月9月長月 September 4月4月卯月 April 10 月神無月 October 5月5月皐月 May.
X線で宇宙を見る ようこそ 講演会に 京大の研究
元素の周期表 教科書 p 元素を 原子番号 順に並べる 性質の良く似た元素がある周期で現れる 元素の周期律 周期表
地球内部の温度分布とニュートリノ地球科学
第12章 層と層を結びつける 固体の地球,液体の海,気体の大気
衝撃波によって星形成が誘発される場合に 原始星の進化が受ける影響
固体の圧電性.
低質量X線連星(X線バースト天体)における元素合成
電気電子材料 電気電子工学科 2年次 鮫島俊之、飯村靖文.
Fe Ag Au C O 陽子と中性子:原子核内でバランスよく存在する Q : Biって中性子の方が多くね? 安定な原子核の例 陽子だけだと
薬品分析学3.
物理システム工学科3年次 物性工学概論 第3回講義
Materials Science and Engineering
海洋の起源 水惑星の形成と維持 東大・理・地球惑星科学 阿部 豊.
電気電子材料 電気電子工学科 2年次 鮫島俊之、飯村靖文.
生体分子を構成している元素 有機分子   C, H, O, N, P, S(C, H, O, N で99%) 単原子イオン 
In situ cosmogenic seminar
微小宇宙物質の 高感度元素定量法の確立 校費 350,000円 旅費 50,000円 平成15年度共同利用研究費査定額
バーチの法則と状態方程式 バーチの法則 Vp= a(M) + br Vp(km/sec) = r (g/cm3)
マントルゼノリス(マントル捕獲岩)からの推定:
地球惑星物性学1 ( ~) 参考文献: 大谷・掛川著 地球・生命 共立出版
生命起源への化学進化.
宇宙物理II(9) Planetary Formation
信川 正順、小山 勝二、劉 周強、 鶴 剛、松本 浩典 (京大理)
単色X線発生装置の製作 副島 裕一.
マントルにおける相転移とマグマ 1.マントルの相転移 マントル遷移層と下部マントル上部の相転移 下部マントルの相転移
第3章 地球物質とその性質.
2012/ 地球物質科学 2012年度.
地球物質科学 2015年度 後半 大谷 6~7回: 実験・観測的科学としての地球の物質科学 教科書 共立出版「地球・生命」 大谷・掛川著
マントルゼノリス(マントル捕獲岩)からの推定:
銀河物理学特論 I: 講義3-4:銀河の化学進化 Erb et al. 2006, ApJ, 644, 813
物理システム工学科3年次 物性工学概論 第2回講義 火曜1限0035教室
「生体小宇宙のなぞにせまる 」 ー生物物理学は生命と物理の架け橋-  物理学専攻 樋口秀男.
金属のイオン化傾向.
地球惑星物性学1 ( ~) 参考文献: 大谷・掛川著 地球・生命 共立出版 島津康夫著・地球の物理 基礎物理学選書 裳華房
地球物質科学 2011年度 前半 石渡 7回: 野外科学としての地球の物質科学
2. 地球を作る物質と化学組成 1)宇宙存在度と隕石 2)原始太陽系星雲でのプロセス:蒸発と凝縮
様々な隕石 月からの隕石、火星からの隕石.
星の進化と元素の起源 -我々はどこからきたのか-
物理システム工学科3年次 「物性工学概論」 第1回講義 火曜1限67番教室
第3章 地球物質とその性質.
地球で最初の海.
2018/09/13 分子雲: 星間ダスト進化と 惑星形成を架ける雲 (Molecular clouds: connecting between evolution of interstellar dust and formation of planets) 野沢 貴也 (国立天文台 理論研究部)   
超新星爆発におけるp核の合成 ~重力崩壊型超新星の場合~
金属欠乏星の亜鉛組成 ~亜鉛組成の中間報告~
PICO-LON dark matter search K.Fushimi for PICO-LON collaboration
宇宙線東西効果を利用した 電子―陽電子選別
矢印や凡例を順番に重ねて,最後にグループ化
物理システム工学科3年次 物性工学概論 第2回講義 火曜1限0023教室
バーチの法則と状態方程式 バーチの法則 Vp= a(M) + br Vp(km/sec) = r (g/cm3)
強磁性半導体のMCD(協力研究) 藤森 淳 ・ 2003A報告 Zn1-xCoxO, Zn1-xVxO, Ga1-xMnxN
第3章 地球物質とその性質.
13族-遷移金属間化合物の熱電材料としての応用
はやぶさ試料(RA-QD )の X線CT解析 – X線CT岩石学の適用例 - X線CT解析の結果に基づいて試料を切断し分析
初期太陽系と初期地球の形成過程.
3.ワイドギャップ半導体の オーム性電極材料開発
星間ダストの起源と量 (On the origin and amount of interstellar dust)
スペース重力波アンテナ DECIGO計画Ⅷ (サイエンス)
天文・宇宙分野1 梅村雅之 「次世代スーパーコンピュータでせまる物質と宇宙の起源と構造」
Distribution of heat source of the Earth
観測的宇宙論ジャーナルクラブ 2006年5月22日 成田 憲保 1
初期太陽系と初期地球の形成過程.
原子記号の復習 日本語→記号 記号→日本語   H.Kadoi.
星間ダストは主にどこで 形成されるか? 野沢 貴也 (Takaya Nozawa) (国立天文台 理論研究部) 共同研究者
地学講義 I 第1回 太陽系と地球の起源、隕石と初期太陽系 第2回 初期地球の形成過程.
第3章 地球物質とその性質.
科学概論 2005年1月27日
Presentation transcript:

2.地球を作る物質と化学組成 1)宇宙存在度と隕石 2)原始太陽系星雲でのプロセス:蒸発と凝縮 3)初期地球の諸過程:冷たい太陽のパラドックス 4)地殻、マントル、核の組成: ニッケルのパラドックス 5)マントルと核の運動:プレートテクトニクスとプルーム キーワード: ペリドタイト、レルゾライト、パイロライト、ニッケルのパラドックス、 強親鉄元素の過剰、揮発性元素の枯渇、隕石の重爆撃、蒸発、凝縮、マグマ・ オーシャン、プレートテクトニクス

6

(Timeline for the Sun, Earth, and Moon) 太陽、地球、月生成の時系列 (Timeline for the Sun, Earth, and Moon) 6 Extensively modified from D.J. DePaolo, Nature

Snow line (Frost line, Ice line)

Snow line (Ice line, Frost line)

揮発性(volatile) と難揮発性(refrqactory)

図 5 (Mantle+Crust)/C1 1.0 0.1 0.01 低 高 0.001 難揮発性の元素 揮発性・やや揮発性の元素 <1300K 親鉄元素 Re Os Ir Au Fe Co Ni Cu Zn P In Cd Ge Ag Cr Mn Ga Sn Na K Rb Cs Tl Pb Bi Zr Mg Nb Al Si Ca Sc Ti Sr Y Ba La Ce Nd Sm Eu Tb Yb Lu Ta Th U V Li 強親鉄元素 難揮発性の親石元素 揮発性の程度 低    高 揮発性元素

親石元素 親鉄元素 強親鉄元素 難揮発性親石元素 揮発性親石元素 >1350 1000 700 400 x Ca Al Ti REE U Th etc Mg Si Cr V Li Mn Na K Cu Rb Ca F Zn In Fe Ni Co W P Mo As Ag Sb Ge Cs Cd Cl Pb Br Bi Tl S Se Os Re Ir Pt Pd Au 強親鉄元素 親鉄元素 親石元素 難揮発性親石元素 揮発性親石元素 >1350 1000 700 400 Condensation temperature, K 1.0 0.1 0.01 0.001 Depletion factor

Mg/Si ratio of the mantle: Volatility (e.g., McDonough, 2003) vs Removal of Si into Core (e.g., O’Neil, 1991; Allegre et al., 2001) McDonough (2003) Log 50% condensation temperature (K) at 10-4 atm Relative abundance 3.2 3.1 3.0 2.9 2.8 2.7 Lithophile elements Refractories Moderately volatiles Volatiles Planetary volatility trend @1AU Mantle Removal of Si from the mantle by metallic iron may explain Mg/Si ratio of the mantle: Entry of 5~7 % of Si into the core? 7

ここまで、12月19日

2.地球を作る物質と化学組成 1)宇宙存在度と隕石 2)原始太陽系星雲でのプロセス:蒸発と凝縮 3)初期地球の諸過程:冷たい太陽のパラドックス 4)地殻、マントル、核の組成: ニッケルのパラドックス 5)マントルと核の運動:プレートテクトニクスとプルーム キーワード: ペリドタイト、レルゾライト、パイロライト、ニッケルのパラドックス、 強親鉄元素の過剰、揮発性元素の枯渇、隕石の重爆撃、蒸発、凝縮、マグマ・ オーシャン、プレートテクトニクス

集積過程 惑星形成期には、衝突現象が重要であった。 衝突現象とは、 衝撃波と高圧の発生 衝突速度と圧力 衝突の規模と高圧の持続時間 隕石に残された衝突の記録

初期地球の諸過程

(1)月と火星の石の宇宙旅行 月と火星:人類の有人探査の目標天体

隕石に残された衝突の記録 隕石に高圧鉱物を探す:隕石、隕石孔  最近発見された様々な高圧鉱物

初期地球の諸過程

ジャイアントインパクト ジャイアントインパクトは必然的な過程 ジャイアントインパクトによる月の形成 月の軌道進化とジャイアントインパクト 月の化学組成の特徴とジャイアントインパクト ジャイアントインパクトの地球への影響

Impact event: 月と地球への隕石重爆撃の痕跡か? レゴリス研究の重要性 The Sm-Nd age and the 39Ar - 40Ar age of A-881757 [1] indicate their source basalt flow crystallized at 3870 Ma and was impacted at 3800 Ma. [1] Misawa et al. (1993) GCA 57, 4687-4702 Impact event: 月と地球への隕石重爆撃の痕跡か? レゴリス研究の重要性

Figure 1 Grain No. 2 Grain No. 3 No. 1 No. 2 Fd No. 3 No.3

Figure 2 (A) (B) SiO2 SiO2 Glass Glass Fd

No. 2 Coesite Fd SiO2 glass Melt (?) 100 μm

初期地球の諸過程

図 5 (Mantle+Crust)/C1 1.0 0.1 0.01 低 高 0.001 難揮発性の元素 揮発性・やや揮発性の元素 <1300K 親鉄元素 Re Os Ir Au Fe Co Ni Cu Zn P In Cd Ge Ag Cr Mn Ga Sn Na K Rb Cs Tl Pb Bi Zr Mg Nb Al Si Ca Sc Ti Sr Y Ba La Ce Nd Sm Eu Tb Yb Lu Ta Th U V Li 強親鉄元素 難揮発性の親石元素 揮発性の程度 低    高 揮発性元素

14