アトラス実験で期待される物理 (具体例編) ① ② ③ ④ ① ② ③ 発見か? 実験の初日に確認 確認! 2011年5月9日 ④ 未発見

Slides:



Advertisements
Similar presentations
Belle 実験における 新型シリコン検出器を用い た低運動量粒子の検出 物理学科 渡辺研究室藤山 幸生.
Advertisements

相対論的重イオン衝突実験 PHENIXにおける Aerogel Cherenkov Counterの シミュレーションによる評価
科研費特定領域第二回研究会 「質量起源と超対称性物理の研究」
第1回「アインシュタインの物理」でリンクする研究・教育拠点研究会 2008年10月11日 (土) 高エネルギー物理学研究室 清矢良浩
電磁カロリーメーターを使って中性パイ中間子を見よう!
Direct Search of Dark Matter
Determination of the number of light neutrino species
相対論的重イオン衝突実験PHENIX におけるシミュレーションによる charm粒子測定の可能性を探る
山崎祐司(神戸大) 粒子の物質中でのふるまい.
2016年夏までの成果:標準理論を超える新粒子の探索(その2)
COMPASS実験の紹介 〜回転の起源は?〜 山形大学 堂下典弘 1996年 COMPASS実験グループを立ち上げ 1997年 実験承認
LHC Run-2 進展状況 [1] Run-2に向けたアトラス検出器の改良 [0] Run-2 LHC
Bファクトリー実験に関する記者懇談会 素粒子物理学の現状 2006年6月29日 名古屋大学 大学院理学研究科 飯嶋 徹.
高エネルギー物理学特論 岡田安弘(KEK) 2007.1.23 広島大学理学部.
ATLAS実験における超対称性事象のバックグラウンドの実験的評価
複荷電ヒッグス粒子のWW崩壊に対するLHC実験からの制限について
CERN (欧州原子核研究機構) LEP/LHC 世界の素粒子物理学研究者の半数以上の約7000人が施設を利用
LHC計画ATLAS実験における 超対称性の発見の研究
ILCにおけるリトルヒッグス・モデルの検証に関する
LHCの開く新たな宇宙物理 松本 重貴 (高エネルギー加速器研究機構).
CERNとLHC加速器 LHC計画 (Large Hadron Collider Project): CERN
LHC加速器の設計パラメーターと 2012年の運転実績
標準模型のその先へ ゲテモノ探し セッションⅤ:ナビゲーショントーク     名古屋大学 中 竜大.
最初に自己紹介 高エネルギー加速器研究機構 素粒子原子核研究所 幅 淳二
FPCCDバーテックス検出器における ペアバックグラウンドの評価 4年生発表 2010/03/10 素粒子実験グループ 釜井 大輔.
Azimuthal distribution (方位角分布)
2018年夏までの成果:ヒッグス粒子発見から精密測定へ
ATLAS実験における J/Y->mm過程を用いたdi-muon trigger efficiency の測定方法の開発及び評価
高エネルギー重イオン衝突実験 PHENIXにおける 光子崩壊を用いた低質量ハドロン探索
高エネルギー加速器研究機構/ 総合研究大学院大学 岡田安弘 2006年6月21日 茨城大学
高エネルギー天体グループ 菊田・菅原・泊・畑・吉岡
LHCでの発見へ向け 世界最大コンピューティンググリッドが始動
LHC計画が目指す物理とは × 1:ヒッグス粒子の発見 2:標準理論を越える新しい物理の発見 未発見!
ATLAS実験におけるシミュレーションを用いたエンドキャップトリガーの性能評価
岡田安弘(KEK,素核研) 2005年8月3日 加速器セミナー
ATLAS実験における ブラックホール探索の研究
ILC実験における ヒッグス・ポータル模型での ヒッグス事象に関する測定精度の評価
ATLAS検出器におけるFake Leptonの割合と Higgs・SUSY粒子探索に与える影響の研究
2015年夏までの成果: 超対称性(SUSY)粒子の探索
岡田安弘 (KEK) シンポジウム「物質の創生と発展」 2004年11月4日
LHC計画で期待される物理 ヒッグス粒子の発見 < 質量の起源を求めて > 2. TeVエネルギースケールに展開する新しい物理パラダイム
LHC計画で期待される物理 ヒッグス粒子の発見 < 質量の起源を求めて > 2. TeVエネルギースケールに展開する新しい物理パラダイム
2016年夏までの成果:ヒッグス粒子発見から精密測定へ
総研大夏季実習 報告 6/8 植木.
2013年夏までの成果:ヒッグス粒子発見から精密測定へ
高エネルギー物理学特論 岡田安弘(KEK) 2008.1.15 広島大学理学部.
μ+N→τ+N反応探索実験の ためのシミュレーション計算
ATLAS実験における ブラックホール探索の研究
2015年夏までの成果:標準理論を超える新粒子の探索(その2)
ILCバーテックス検出器のための シミュレーション 2008,3,10 吉田 幸平.
高エネルギー加速器研究機構/ 総合研究大学院大学 岡田安弘 2006年8月10日 日本物理学会科学セミナー
大学院ガイダンス(柏キャンパス) 2011年6月11日 岸本 康宏
リニアコライダーでの ビームサイズ測定方法の研究
2017年夏までの成果:ヒッグス粒子発見から精密測定へ
LHCの加速装置はショボイ こんな加速器がわずか 8個設置されているだけ。 小さな努力の 積み重ね
LHC計画ATLAS実験における 超対称性の発見の研究
2012年夏までの成果: ヒッグス探索で新粒子発見!
2015年夏までの成果: 超対称性(SUSY)粒子の探索
! Web(World Wide Web)の発祥地 ! LHC計画 (Large Hadron Collider Project):
2016年夏までの成果:標準理論を超える新粒子の探索(その1) 緑:除外されたSUSY粒子の質量範囲 [TeV]
2017年夏までの成果:標準理論を超える新粒子の探索(その1) 緑:除外されたSUSY粒子の質量範囲 [TeV]
2015年春までの成果:ヒッグス粒子発見から精密測定へ
ATLAS実験におけるSUSY の発見能力
2010年夏までの成果 測定器の性能の確認 既知粒子の再発見 W,Z ジェット 超対称性粒子の探索の始まり トップクォークの再発見
[2] 超対称性理論(SuperSymmetry, SUSY) [4] ヒッグス粒子の階層性(微調整・不自然さ)問題
[2] 超対称性理論(SuperSymmetry, SUSY) [4] ヒッグス粒子の階層性(微調整・不自然さ)問題
荷電粒子の物質中でのエネルギー損失と飛程
Penta Quark Search in sNN=200 GeV Au+Au Collisions at RHIC-PHENIX
陽子の中のSeaクォーク 柴田研究室 02M01221 渡辺 崇 [内容] 1.Seaクォークとは 2.β崩壊とクォーク
LHC (Large Hadron Collider)
Presentation transcript:

アトラス実験で期待される物理 (具体例編) ① ② ③ ④ ① ② ③ 発見か? 実験の初日に確認 確認! 2011年5月9日 ④ 未発見 物理事象の断面積 陽子 陽子 ミニマムバイアスイベント ① 陽子は 3 つのクォーク (uud)、グルーオン、sea クォークから構成されており、その衝突から生成される事象のほとんどは、これらの粒子のQCD (量子色力学) による散乱反応で占められています。生成確率の小さい新しい物理事象を観測するには非常に多くのデータを蓄積しなければなりません。 High-pT ジェットイベント ETjet>100GeV ② W,Zボソン生成 2009年 0.9TeV ~10μb-1 H:mH=126GeV? 2010年の皮算用 2012年の皮算用 ヒッグス生成 (mH=120GeV) ③ ④ SUSY (mSUSY=1TeV) 2011年12月 7TeV ~5fb-1 データの蓄積に伴って新たな物理反応を探索することが可能になる 2012年8月 8TeV ~12fb-1 2015年10月 14TeV ~80fb-1 加速器の衝突エネルギー 面白い事象は全反応の 0.1% 以下 ヒッグス粒子が作られるのは全反応の100億分の1以下 アトラスで見える(た)物理事象 の例 ① ② ミニマムバイアスイベント たくさん起こるのでほとんど捨ててしまう Ze+e- イベント 崩壊でできた高いエネルギーの電子 と陽電子が観測される。 ③ ヒッグス粒子 発見か? 2012年7月4日 ATLAS実験は 質量126GeV付近にヒッグス粒子と みられる粒子を発見と報告した。 実験の初日に確認 2011年3月30日 確認! 2011年5月9日 Higgs  ZZ e+ e- m+ m- 典型的なヒッグス粒子崩壊の一つ 2e2μ candidate with m2e2μ= 123.9 GeV 超対称性粒子生成イベント 多数の高運動量ハドロンジェットと 消失エネルギーが観測される ミニブラックホール生成イベント 多種、多数の高エネルギー粒子が 観測される Higgs γγ 典型的なヒッグス粒子崩壊の一つ ④ 未発見 未発見