3. 論理ゲート の 実現 五島 正裕.

Slides:



Advertisements
Similar presentations
情報技術基礎 論理素子による進歩. 計算機の歴史 計算機の歴史 1649 パスカル 歯車式加減算機 1839 バベッジ 階差機関 1890 ホレリス パンチカードシス テム ※歯車式の計算機は 1960 年(昭和30年)代ま で 便利な計算機として実際に使われてい た.
Advertisements

論理回路 第3回 今日の内容 前回の課題の解説 論理関数の基礎 – 論理関数とは? – 真理値表と論理式 – 基本的な論理関数.
論理回路 第 11 回
DATE : 11. メモリ 五島 正裕 今日の内容 メモリ  SRAM  DRAM  Flash Memory.
ディジタル回路 11. メモリ 五島 正裕 ディジタル回路 今日の内容 メモリ  SRAM  DRAM  Flash Memory.
第3回 論理式と論理代数 本講義のホームページ:
第1回 オリエンテーション ディジタル工学とは何だろうか?
11. メモリ 五島 正裕.
10. メモリ 五島 正裕.
ラベル付き区間グラフを列挙するBDDとその応用
電子回路設計 電子制御設計製図Ⅰ  2009年11月17日 Ⅳ限目.
第2回 真理値表,基本ゲート, 組合せ回路の設計
4. 順序回路 五島 正裕.
数理論理学 第1回 茨城大学工学部情報工学科 佐々木 稔.
第4回 カルノー図による組合せ回路の簡単化 瀬戸 目標 ・AND-OR二段回路の実現コスト(面積、遅延)が出せる
高性能コンピューティング論2 第1回 ガイダンス
補数 n:桁数、b:基数 bの補数 bn-x 253(10進数)の10の補数は、 =747
デジタル回路(続き) コンピュータ(ハードウェアを中心に)
基本情報技術概論(第3回) 埼玉大学 理工学研究科 堀山 貴史
ディジタル回路 1. アナログ と ディジタル 五島 正裕.
1. アナログ と ディジタル 五島 正裕.
7. 順序回路 五島 正裕.
8. 順序回路の簡単化,機能的な順序回路 五島 正裕.
5. 機能的な組み合わせ回路 五島 正裕.
電子回路Ⅰ 第2回(2008/10/6) 今日の内容 電気回路の復習 オームの法則 キルヒホッフの法則 テブナンの定理 線形素子と非線形素子
直流電圧計,直流電流計 例えば,電流Iを測定したい E R I E R A 電流計の読みが 電流 I を示すだろうか 電気電子基礎実験.
第8回  論理ゲートの中身と性質 論理ゲートについて,以下を理解する 内部構成 遅延時間,消費エネルギー 電圧・電流特性 瀬戸.
4. 組み合わせ回路の構成法 五島 正裕.
6. 順序回路の基礎 五島 正裕.
ICトレーナーの構成 7セグメントLED ブレッドボード XOR OR AND NAND 電源端子 スイッチ端子 LED端子 データLED
第6回 よく使われる組合せ回路 瀬戸 重要な組合せ回路を理解し、設計できるようにする 7セグディスプレイ用デコーダ 加算回路・減算回路
アルゴリズムとチューリングマシン 「もの」(商品)としてのコンピュータ 「こと」(思想)としてのコンピュータ アルゴリズム
電界効果トランジスタの動作原理 トランジスタを用いた回路のバイアス
電子回路設計 電子制御設計製図Ⅰ  2010年11月30日 Ⅲ限目.
電界効果トランジスタの動特性 FET(Field Effective Transistor)とは 電圧制御型の能動素子
電界効果トランジスタの静特性 FET(Field Effective Transistor)とは 電圧制御型の能動素子
電界効果トランジスタの動作原理 トランジスタを用いた回路のバイアス
ディジタル回路 3. 組み合わせ回路 五島 正裕 2018/11/28.
1.コンピュータと情報処理 p.18 第1章第1節 2.コンピュータの動作のしくみ CPUと論理回路
2. 論理ゲート と ブール代数 五島 正裕.
ディジタル回路 2. ブール代数 と 論理ゲート 五島 正裕.
第5回 今日の目標 §1.6 論理演算と論理回路 ブール代数の形式が使える 命題と論理関数の関係を示せる
ディジタル回路 6. 順序回路の実現 五島 正裕.
電子回路Ⅰ 第7回(2008/12/1) 小信号動作量 トランジスタ回路の接地形式.
ICトレーナーの構成 7セグメントLED ブレッドボード XOR OR AND NAND 電源端子 スイッチ端子 LED端子 データLED
ディジタル回路 5. ロジックの構成 五島 正裕.
ICトレーナーの構成 7セグメントLED ブレッドボード XOR OR AND NAND 電源端子 スイッチ端子 LED端子 データLED
電気電子情報第一(前期)実験 G5. ディジタル回路

ディジタル信号処理 Digital Signal Processing
光スイッチングデバイス.
FETの等価回路 トランジスタのバイアス回路(復習)
ディジタル回路 0. ディジタル回路 五島 正裕.
7. 機能的な組み合わせ回路 五島 正裕.
ディジタル回路 7. 機能的な組み合わせ回路 五島 正裕.
アナログ と ディジタル アナログ,ディジタル: 情報処理の過程: 記録/伝送 と 処理 において, 媒体(メディア)の持つ物理量 と
電子回路Ⅰ 第8回(2007/12/03) 差動増幅器 負帰還増幅器.
RC結合増幅回路 トランジスタの高周波特性 ダーリントン接続、カレントミラー回路
電子回路Ⅰ 第9回(2008/12/15) 差動増幅器 負帰還増幅器.
基本情報技術概論(第2回) 埼玉大学 理工学研究科 堀山 貴史
論理回路 第12回
論理回路 第4回
  第3章 論理回路  コンピュータでは,データを2進数の0と1で表現している.この2つの値,すなわち,2値で扱われるデータを論理データという.論理データの計算・判断・記憶は論理回路により実現される.  コンピュータのハードウェアは,基本的に論理回路で作られている。              論理積回路.
8. 順序回路の実現 五島 正裕.
論理回路 第5回
RC結合増幅回路 トランジスタの高周波特性 ダーリントン接続、カレントミラー回路
コンピュータの五大要素 入力装置 データ(プログラム)を取り込む 出力装置 処理結果のデータを外部に取り出す
二端子対網の伝送的性質 終端インピーダンス I1 I2 -I2 z11 z12 z21 z22 E ZL: 負荷インピーダンス V1 V2
アナログ と ディジタル アナログ,ディジタル: 情報処理の過程: 記録/伝送 と 処理 において, 媒体(メディア)の持つ物理量 と
2009年8月18日,新潟大学 「情報」と「ものづくり」 の実践教育3 下保敏和,佐藤亮一.
Presentation transcript:

3. 論理ゲート の 実現 五島 正裕

今日の内容 前回の復習 アナログ と ディジタル 論理関数の完全性 本論 論理ゲート の 実現 今日のまとめ

前回の復習

アナログ と ディジタル アナログ,ディジタル: 情報処理の過程: 記録/伝送 と 処理 において, 媒体の持つ物理量 と 媒体の持つ物理量 と それが表現する値 との 写像の方式

物理量 と 値 の 写像 閾値 値 値 3 2 1 O O 物理量 物理量 アナログ ディジタル

多値ディジタル 値の数 例 3値 4値 Flash Memory XDR(PS3 の DRAM の I/F) 8値 MLT-3(Multi Level Transmission-3) 4値 Flash Memory XDR(PS3 の DRAM の I/F) 8値 8PSK (Phase Shift Keying) 10値 10進表示 16値 16PSK

論理ゲート AND OR NOT (論理積) (論理和) (論理否定) z = a∙b z = a + b z = a z = ¬ a a MIL記号 MIL symbol a a z z a z b b 論理式 logic expression z = a∙b z = a + b z = a z = ¬ a a b z 1 a b z 1 a z 1 真理値表 truth table

ブール代数の公理系 変数(ブール変数)の値 0 または 1 論理和 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 0, 1 + 1 = 1 論理積 0 ∙ 0 = 0, 0 ∙ 1 = 1, 1 ∙ 0 = 1, 1 ∙ 1 = 1

値の数 記録/伝送 多値もあり 処理(論理関数) 2値

完全性 完全集合: すべての論理関数が作れる 完全集合の例: {AND,OR,NOT} {NAND} 完全集合をディジタル回路で作ればよい!

論理ゲート の 実現

今日の目標 論理ゲートはなぜ2値? 論理ゲートとなる条件

電気回路

論理ゲート と スイッチ スイッチ On/Off 2値! 接続: AND: 直列 OR : 並列

電気回路 入出力 入力:スイッチを押す力 出力:電球の光 多段接続 不能 入力と出力が「同じ」である必要がある

機械式 (mechanical) 論理ゲート

機械式論理回路 入出力 入力:ロッドを押す力 出力:ロッドを押す力 多段接続 不可能ではない,が… 入力が出力を駆動: 重くて動かない! 次段のゲートを駆動 (drive) する能力を供給する必要がある

リレー

リレー式論理ゲート

リレー式論理回路 入出力 入力:電圧 (low/high) 出力:電圧 (low/high) 多段接続 可能 次段の駆動能力は,電源から与えられる

スプール・バルブ

流体式 (fluid) 論理回路

流体式論理ゲート

流体式論理ゲート 入出力 入力:作動流体の圧力 (low/high) 出力:作動流体の圧力 (low/high) 多段接続 可能 次段の駆動能力は,高圧タンクから与えられる

電子式論理ゲート 電子デバイス 真空管 トランジスタ 詳しくは,「電子デバイス基礎」で

トランジスタ (CMOS FET) FET (Field-Effect Transistor,電界効果トランジスタ) 電界で電子を動かしてスイッチング G S D

電子式論理ゲート 入出力 入力:電圧 (low/high) 出力:電圧 (low/high) 多段接続 可能 次段の駆動能力は,電源から与えられる 「増幅」,「利得」

トランジスタ メリット スイッチング速度が高速 電子:容易に制御可能な最小の物質 微細化,高集積化が可能 フォト・リソグラフィー 現在のところ,最適な論理ゲート

今日のまとめ

論理ゲートの実現法 論理ゲートの実現法 スイッチ → 電球 機械式論理ゲート リレー式論理ゲート 流体式論理ゲート 電子式論理ゲート トランジスタ etc.

論理ゲートとなる条件 論理ゲート: 入力と出力が同形式であるスイッチ スイッチ 駆動能力 (drive) 「小さい力で大きい力を制御できる」 2値:off/on 必ずしも「電子回路」である必要はない!

この講義の位置づけ(本講義) 画像 処理 音声 CG DB 探索 パタン認識 数値処理 記号処理 OS 言語処理系 コンピュータ・アーキテクチャ 論理回路 電子回路,デバイス

来週以降の予定 11/17 組み合わせ回路の最小化 工学部避難訓練(11:45~) 11/24 順序回路 12/ 1 休講?