電磁気学C Electromagnetics C 6/17講義分 電磁波の偏り 山田 博仁
電磁波 電磁波は、電界(電場)と磁界(磁場)が振動しながら横波として伝搬していくもの 磁界 電界 伝搬方向
電磁波の偏波 x-y 平面内に電場ベクトルを有し、+z 方向に進む平面電磁波は、電場ベクトルを x 成分 y 成分に分けて考えられ、その和として以下の式で表される 電場ベクトルの x 成分と y 成分の間の位相差 上の2つの式から、以下の方程式が導かれる E H x y z k
電磁波の偏波 まず、電場ベクトルの x 成分と y 成分の位相差 φ がゼロの場合を考えると、 よって、 従って、電場ベクトルは x-y 平面内に直線状の軌跡を持つベクトルとして伸び縮みしながら +z 方向に伝搬して行く。このような電磁波の偏り方を直線偏波 (linear polarization) と言う。 電場ベクトルを含むこのような面を偏波面と言う E x y z k Ex Ey 光では、電界の振動面を「振動面」、磁界の振動面を「偏光面」と呼んでいる
電磁波の偏波 次に、電場ベクトルの x 成分と y 成分の位相差 φ が±π/2 の場合を考えると、 従って、電場ベクトルは x-y 平面内に楕円状の軌跡を持つベクトルとして回転しながら +z 方向に伝搬して行く。このような電磁波の偏り方を楕円偏波 (elliptic polarization) と言う。 φ が-π/2のとき、進行方向に向かって左回りに回転しながら伝搬していく (左旋性) この図は左旋性円偏波を表す E x y z k 逆に φ が+π/2のときは、進行方向に向かって右回りに回転しながら伝搬していく (右旋性)
電磁波の偏波 一般には、電場ベクトルの x 成分と y 成分との位相差 φ は、-π/2 ≦ φ ≦ +π/2 の任意の値となるので、電場ベクトルは x-y 平面内に軸を有する楕円状の軌跡を持つベクトルとして回転しながら +z 方向に伝搬して行く。 左旋円偏波 任意の偏波状態は、Poincare球の表面上の位置で表される Ex Ey a b 赤道上は α = 0 垂直偏波 水平偏波 β = 0 右旋円偏波 ポアンカレ(Poincare)球
各種偏波用アンテナ 電波においては、直線偏波の偏波面が、地面に対して垂直になっているとき垂直偏波、平行なときには水平偏波と言う。我が国の中波ラジオ放送は垂直偏波、一般に都市部のTV放送やFM放送は水平偏波で送信されている。垂直偏波と水平偏波とは互いに干渉しないので、周波数が接近しており混信の恐れのあるような場合には、相互に偏波を違えることによって混信を防ぐことができる。山間部などでTVアンテナの素子が縦に設置されているのは、このような理由によるもの。ただし偏波は、電波伝搬中に反射や回折により変化してしまうので、必ずしも送信された偏波状態のままで受信アンテナに届くとは限らない。 水平偏波用 円偏波用 垂直偏波用 アマチュア無線用ヘリカルアンテナ タクシー無線のルーフアンテナ 八木アンテナと八木先生
各種電磁波の波長と周波数 光も電磁波の一種 !! 電磁波の伝搬速度: 真空中では約30万km/秒 屈折率nの媒質中では、
偏光 振動面 電界の波 光の進行方向 磁界の波 偏光面 直線偏光 光の進行方向と磁界ベクトルを含む面を光の偏りの面又は偏光面、また、光の進行方向と電場ベクトルを含む面を振動面と呼ぶ 偏光面が回転しながら伝搬する光もあり、楕円偏光や円偏光と呼ばれている 電界の波 左旋性円偏光
偏光 電界の振動方向がバラバラ 振動方向に「偏り」がない 「偏光していない」という 太陽や電球などからの光 レーザー光 光の電界 ある特定方向に振動する成分が多い 振動の向きに「偏り」がある 「偏光している」という 水面や雪面などでの反射光 ※人間の眼では偏光の違いを(ほとんど)識別できない
偏光フィルター 偏光フィルター (偏光子, PLフィルターともいう) ある特定方向の振動成分の光だけを透過する 偏光フィルターの向き (マークで示されている) 偏光フィルター (偏光子, PLフィルターともいう) ある特定方向の振動成分の光だけを透過する g 偏光状態を調べることができる
偏光フィルターによる反射光の除去 海面や雪面からの反射光が眩しい時、偏光サングラスをかけると眩しくなくなる理由は? P偏光 P偏光に対してはブリュースター角が存在するため、ある角度での反射光は弱くなる。一方、S偏光の光に対してはブリュースター角が存在しないので、強い反射が起きる。従って、 S偏光の光のみを除去するように偏光子を配置すると、反射光の大部分をカットできる。 電界 偏光子 S偏光 電界 偏光子 偏光フィルターなし 偏光フィルターあり
S偏光, P偏光とブリュースター角 S × × P q 水面に平行な方向に振動している波は 強く反射される (S偏光という) P偏光のみを通すフィルターを透して撮影した画像 g 電球の反射光が見えなくなった 反射が0になる角度q を「ブリュースター角」という
偏光を利用した液晶ディスプレイのしくみ 2枚の偏光フィルター(偏光子)を、向きが同じになるよう配置すると光が通るが、直交するように配置すると光が通らない 液晶に光を通すと、液晶分子の配列に沿って、光の偏光方向は90º回転しながら通過する 液晶を通過した光は偏光方向が90º回転し、2枚目の偏光フィルターを通過する。配向膜間に電圧を印加すると、液晶分子の向きが揃い、光の偏光方向は回転しないので、光は偏光フィルターを通過できない 出典: http://www.sharp.co.jp/products/lcd/tech/s2_1.html
青空の偏光方向 偏光方向 太陽からの離角90度 空気の分子に太陽光が当たるとレイリー散乱が起きる。散乱光強度は光の波長の4乗に反比例する。即ち、波長の短い青い光ほど強く散乱され、そのために空は青く見える。レイリー散乱光は偏光しており、空が澄んでいれば太陽からの離角90度の空から最も強く偏光した散乱光がやってくる。ミツバチは、青空の偏光を見て太陽の方角を知ると言われている。大気汚染や水蒸気があると、偏光度は減少し、曇天では殆ど偏光していない。
ヒトも光の偏光方向を感知できる? 君は、ハイディンガーのブラシが見えるかな? 電界の振動方向 ハイディンガーのブラシ 偏光した光(液晶画面の白い画面など)を見ると、このような模様が見えることがある。 これは、人の網膜の細胞の複屈折によるもので、この現象の発見者にちなんでHaidinger’s brushと呼ばれている。ただし、個人差があるので、見えない人もいる。