自己縮小画像と混合ガウス分布モデルを用いた超解像

Slides:



Advertisements
Similar presentations
自動映像生成のための パーティクルフィルタによるボールの追 跡 2007 年 3 月 21 日 神戸大学大学院自然科学研究科 矢野 一樹.
Advertisements

顔表情クラスタリングによる 映像コンテンツへのタギング
電子透かしにおける マスキング効果の主観評価
画像セグメンテーションにおけるウェーブレット係数の局所テクスチャ特徴を用いたGraph Cuts
音響モデルを利用したシングルチャネルに よる音源方向推定
ウェーブレットによる 信号処理と画像処理 宮崎大輔 2004年11月24日(水) PBVセミナー.
音響尤度を用いた マルチスピーカ音響エコーキャンセラの検討
符号化のための重み付きジョイントバイラテラルフィルタを用いた 奥行き画像超解像
時空間データからのオブジェクトベース知識発見
雑音重み推定と音声 GMMを用いた雑音除去
状況の制約を用いることにより認識誤りを改善 同時に野球実況中継の構造化
確率モデルによる 画像処理技術入門 --- ベイズ統計と確率的画像処理 ---
ランダムプロジェクションを用いた 音声特徴量変換
3次キュムラントのバイスペクトラムと PCAによる音声区間検出
画像の拡大と縮小.
自閉症スペクトラム障害児と定型発達児の識別に関する音響特徴量選択の検討
非負値行列因子分解による 構音障害者の声質変換
複数尤度を用いた 3次元パーティクルフィルタによる選手の追跡 IS1-39
7. 音声の認識:高度な音響モデル 7.1 実際の音響モデル 7.2 識別的学習 7.3 深層学習.
Bottom-UpとTop-Down アプローチの統合による 単眼画像からの人体3次元姿勢推定
視点移動カメラにおけるカメラキャリブレーション
混合ガウスモデルによる回帰分析および 逆解析 Gaussian Mixture Regression GMR
モデルの逆解析 明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌.
多重ベータ分布を用いた音色形状の数理モデリングによる
Songzhu Gao, Tetsuya Takiguchi, Yasuo Ariki (Kobe University) 
雑音環境下における 非負値行列因子分解を用いた声質変換
音響伝達特性を用いた単一マイクロホンによる話者の頭部方向の推定
構造情報に基づく特徴量を用いた グラフマッチングによる物体識別 情報工学科 藤吉研究室  EP02086 永橋知行.
QRコードを用いたウェーブレット変換による 電子透かし
NMF と基底モデルを用いた多重楽音解析 2-P-10 中鹿亘 ・ 滝口哲也 ・ 有木康雄 (神戸大) 概要 従来手法の問題点 提案手法
東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka)
1-Q-9 SVMとCARTの組み合わせによる AdaBoostを用いた音声区間検出
部分的最小二乗回帰 Partial Least Squares Regression PLS
構音障害者を対象とした混合正規分布モデルに基づく統計的声質変換に関する研究
Genetic Algorithm-based Partial Least Squares GAPLS Genetic Algorithm-based Support Vector Regression GASVR 明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌.
顔特徴点移動量・点間距離変化量の組み合わせに基づく顔表情認識
非負値行列因子分解に基づく唇動画像からの音声生成
Number of random matrices
「データ学習アルゴリズム」 第3章 複雑な学習モデル 報告者 佐々木 稔 2003年6月25日 3.1 関数近似モデル
Wavelet係数の局所テクスチャ特徴量を用いたGraph Cutsによる画像セグメンテーション
Bottom-UpとTop-Down アプローチの組み合わせによる 単眼画像からの人体3次元姿勢推定
多重ベータ混合モデルを用いた調波時間構造の モデル化による音声合成の検討
過学習を考慮した IS1-60 AAMパラメータの選択と回帰分析による 顔・視線方向同時推定 顔・視線同時推定 研究背景
遺伝的アルゴリズム (GA) を活用した スペクトルの波長選択および時系列 データにおけるプロセス変数かつその時間 遅れ (ダイナミクス) の選択 明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌.
東北大 情報科学 田中和之,吉池紀子 山口大 工 庄野逸 理化学研究所 岡田真人
HMM音声合成における 変分ベイズ法に基づく線形回帰
距離空間ピラミッドを用いた LLCによる3次元物体認識
重みつきノルム基準によるF0周波数選択を用いた Specmurtによる多重音解析
バイラテラルフィルタによる実雑音下音声認識 のための音声特徴量抽出
1ーQー18 音声特徴量抽出のための音素部分空間統合法の検討
尤度最大化基準を用いたエコー推定に基づく 車室内音響エコーキャンセラの検討
音響伝達特性モデルを用いた シングルチャネル音源位置推定の検討 2-P-34 高島遼一,住田雄司,滝口哲也,有木康雄 (神戸大) 研究の背景
リッジ回帰(Ridge Regression, RR) Least Absolute Shrinkage and Selection Operator (LASSO) Elastic Net (EN) 明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌.
音響伝達特性を用いたシングルチャネル音源方向推定
制約付き非負行列因子分解を用いた 音声特徴抽出の検討
東北大学 大学院情報科学研究科 応用情報科学専攻 田中 和之(Kazuyuki Tanaka)
多重関数を用いた調波時間スペクトル形状のモデル化による音声合成 1-P-4
音響伝達特性を用いた単一チャネル 音源位置推定における特徴量選択の検討
「データ学習アルゴリズム」 第3章 複雑な学習モデル 報告者 佐々木 稔 2003年8月1日 3.2 競合学習
1-Q-12 Buried Markov Modelを用いた構音障害者の音声認識の検討
Mathematica Package (BimodalAnalysis.m)
CSP係数の識別に基づく話者の 頭部方向の推定
AAMと回帰分析による視線、顔方向同時推定
グラフ-ベクトル変換を用いたグラフ構造表現による一般物体認識
Normalized Web Distanceを用いた音声認識の誤り訂正法 301-4in
ランダムプロジェクションを用いた音響モデルの線形変換
雑音環境下における Sparse Coding声質変換 3-P-49d
1-P-2 フィッシャー重みマップに基づく不特定話者音素認識の検討
転移学習 Transfer learning
混合ガウスモデル Gaussian Mixture Model GMM
Presentation transcript:

自己縮小画像と混合ガウス分布モデルを用いた超解像 IS2-22 自己縮小画像と混合ガウス分布モデルを用いた超解像 小川祐樹・堀 貴博・滝口哲也・有木康雄(神戸大学) 研究背景 提案手法 モデル性が強く,表現力の強い手法を提案 従来手法のように大量の学習画像を用いず,入力画像のみで処理 2つの提案手法 GMMから作成した変換関数を用いて超解像を行う GMM GMMとPLSを組み合わせて変換関数を作成する  GMM+PLS 超解像とは 低解像度の劣化画像を高解像度の画像へと変換する技術 GMM(Gaussian Mixture Model) 変換関数 確率分布を複数の正規分布に対する重み付き和を用いて表現する パラメータの推定にはEMアルゴリズム(Expectation Maximization)を用いる GMMの例 データの次元 : 2 正規分布混合数 : 4 GMM parameters are estimated using (EM) algorithm 提案手法の流れ Reduction Bicubic interpolation Estimation of parameters Bicubic interpolation PLS(Partial Least Squares) Self-reduction image GMMのみで変換関数を作成すると , 過学習が起こる可能性があるので , それを防ぐために用いる データをそのまま使わずに潜在変数を計算 し、その潜在変数への回帰を行う Enlarged image Input image High-pass filter Super-resolution image Image patches Diff image 回帰係数:β 残差:e Conversion Image patches GMM + PLS回帰 GMM + PLS or GMM of Conversion function Learning of conversion function Estimation of Super-resolution 評価実験 256x256画素の画像を縦横2倍に拡大し,失われた高周波成分がどれだけ復元できたか調べる 比較手法: Bicubic法, Example-based手法, スパースコーディング, 提案手法(GMMのみ), 提案手法(GMM + PLS) 評価方法:PSNR, SSIM, VSNR PSNR SSIM VSNR Bicubic 33.07 0.8015 16.20 Example-based 32.23 0.7540 15.35 Sparse-coding 34.20 0.8608 17.05 Proposed(GMM) 35.57 0.9157 17.43 Proposed(GMM+PLS) 36.74 0.9162 17.32 まとめ・今後の課題 従来手法との比較を行った結果,2つの提案手法(GMMのみ,GMM+PLS) 共に,従来手法より評価値が優れ, より鮮明な画像を作成することができた 今後の課題 : パラメータの自動推定,更に有効な変換関数の作成方法