非決定性有限オートマトン 状態の有限集合 入力記号の有限集合 注意 動作関数 初期状態 受理状態の有限集合.

Slides:



Advertisements
Similar presentations
和田俊和 資料保存場所 /2/26 文法と言語 ー正規表現とオートマトンー 和田俊和 資料保存場所
Advertisements

計算の理論 I -言語とオートマトン- 月曜3校時 大月 美佳.
文法と言語 ー字句解析とオートマトンlexー
コンパイラ 2011年10月17日
計算の理論 I 決定性有限オートマトン(DFA) と 非決定性有限オートマトン(NFA)
5.チューリングマシンと計算.
5.チューリングマシンと計算.
計算の理論 II NP完全 月曜4校時 大月美佳.
計算の理論 I ー DFAとNFAの等価性 ー 月曜3校時 大月 美佳.
授業展開#11 コンピュータは 何ができるか、できないか.
8.クラスNPと多項式時間帰着.
文法と言語 ー文脈自由文法とLL構文解析ー
東京工科大学 コンピュータサイエンス学部 亀田弘之
計算の理論 II 文脈自由文法と プッシュダウンオートマトン
9.NP完全問題とNP困難問題.
スタック長の 特徴付けによる 言語の非DCFL性 証明
コンパイラ 2012年10月15日
7.時間限定チューリングマシンと   クラスP.
チューリング機械 状態の有限集合 ヘッドの方向を表す。 L:1コマ左へ R:1コマ右へ テープ記号の有限集合 入力記号の有限集合 動作関数
第2章 「有限オートマトン」.
形式言語とオートマトン2013 ー有限オートマトンー 第5日目
形式言語とオートマトン Formal Languages and Automata 第4日目
形式言語とオートマトン2008 ー有限オートマトンー
文法と言語 ー字句解析とオートマトンlexー
形式言語とオートマトン2012 ー有限オートマトンー 第3日目
文法と言語 ー字句解析とオートマトンlexー
形式言語の理論 5. 文脈依存言語.
東京工科大学 コンピュータサイエンス学部 亀田弘之
計算の理論 I ー 正則表現(今度こそ) ー 月曜3校時 大月 美佳.
形式言語とオートマトン Formal Languages and Automata 第4日目
形式言語とオートマトン2017 ー有限オートマトンー 第3日目
オートマトンとチューリング機械.
言語と文法 言語とは,ルールに従う記号列の無限集合である. 文法を与えることで言語が定義できる.
計算の理論 II 言語とクラス 月曜4校時 大月美佳.
計算の理論 II 時間量と領域量 月曜5校時 大月美佳 2019/4/10 佐賀大学理工学部知能情報システム学科.
平成20年10月5日(月) 東京工科大学 コンピュータサイエンス学部 亀田弘之
計算の理論 II 前期の復習 -有限オートマトン-
計算の理論 I ε-動作を含むNFA 月曜3校時 大月 美佳.
計算の理論 I ε-動作を含むNFA 月曜3校時 大月 美佳 平成15年6月2日 佐賀大学知能情報システム学科.
東京工科大学 コンピュータサイエンス学部 亀田弘之
東京工科大学 コンピュータサイエンス学部 亀田弘之
2007年度 情報数理学.
文法と言語 ー文脈自由文法とLL構文解析ー
モデル検査(5) CTLモデル検査アルゴリズム
チューリングマシン 0n1nを受理するチューリングマシン 入力テープ b b b b 状態遷移機械.
形式言語とオートマトン 中間試験解答例 2016年11月15実施 中島毅.
平成26年4月22日(火) 東京工科大学 コンピュータサイエンス学部 亀田弘之
計算の理論 I 決定性有限オートマトン(DFA) と 非決定性有限オートマトン(NFA)
第6章-2 計算のモデル オートマトン Turing 機械 計算可能性 1.
文法と言語 ー文脈自由文法とLR構文解析ー
形式言語とオートマトン2013 ー有限オートマトンー 第3日目
計算の理論 I 非決定性有限オートマトン(NFA)
5.チューリングマシンと計算.
計算の理論 I -プッシュダウンオートマトン-
計算の理論 I プッシュダウンオートマトン 火曜3校時 大月 美佳 平成16年7月6日 佐賀大学知能情報システム学科.
形式言語とオートマトン 第14回 プッシュダウンオートマトンと全体のまとめ
文法と言語 ー字句解析とオートマトンlexー
4.プッシュダウンオートマトンと 文脈自由文法の等価性
計算の理論 I NFAとDFAの等価性 火曜3校時 大月 美佳 平成16年5月18日 佐賀大学理工学部知能情報システム学科.
Copyright 2002 守屋悦朗 オートマトンって? (Turing machine) (アニメーションで実行のこと)
コンパイラ 2012年10月11日
オートマトンって? (Turing machine).
計算の理論 I ε-動作を含むNFAと等価なDFA
計算の理論 I ε-動作を含むNFA 火曜3校時 大月 美佳 平成16年5月25日 佐賀大学知能情報システム学科.
形式言語とオートマトン Formal Languages and Automata 第5日目
情報数理Ⅱ 第10章 オートマトン 平成28年12月21日.
計算の理論 I ー ε-動作を含むNFA ー 月曜3校時 大月 美佳.
計算の理論 I プッシュダウンオートマトン 月曜3校時 大月 美佳 平成15年7月7日 佐賀大学知能情報システム学科.
計算の理論 II 多テープTuring機械 月曜4校時 大月美佳 平成16年11月29日 佐賀大学知能情報システム学科.
計算の理論 II 時間量と領域量 月曜4校時 大月美佳 2019/9/13 佐賀大学理工学部知能情報システム学科.
Presentation transcript:

非決定性有限オートマトン 状態の有限集合 入力記号の有限集合 注意 動作関数 初期状態 受理状態の有限集合

非決定性有限オートマトン

場合1 場合2 2通りの可能性がある。

場合1 場合1-1 場合1-2 ここでまた2通りの可能性がある。

場合1-1

場合1-2

場合2

よって,入力語 baa に対して3つの遷移の可能性があるが,

入力語を読み終えたとき受理状態に到達する遷移が可能なので,入力語 baa は受理される。

場合1 場合2 2通りの可能性がある。

場合1 場合1-1 場合1-2 ここでまた2通りの可能性がある。

場合1-1

場合1-2 これ以上,遷移できない。

場合2

これ以上,遷移できない。

よって,入力語 aab に対して3つの遷移の可能性があるが,

第1の可能性は,

入力語を読み終えたとき受理状態に到達しない。

第2の可能性は,

これ以上遷移できない。

第3の可能性は,

これ以上遷移できない。

よって, いずれも,入力語を読み終えたとき受理状態に到達しないか,入力語を読み終えることができないので,入力語 aab は拒否される。

なお, である。