Download presentation
Presentation is loading. Please wait.
1
第4章補足 分散分析法入門 統計学 2013年度
2
分散分析の考え方 2つの母集団の平均に差があるかどうかは、2つの標本に基づくt検定をおこなうことができる。
では、母集団が3つ以上になった場合はどうすればよいのであろうか? ⇒ 3つの母集団をA,B,Cとすると、AとB、AとC、BとCの間に差があるかどうかのt検定をおこなうことが可能 ⇒ 検定の回数は多くなり、さらに4つ、5つとなると増えるにしたがって、非常に多くなる。 3つ以上の母集団の平均に差がないかどうかは、分散分析を用いて検証する。
3
母集団1(個体数N1) 母集団2(個体数N2) 母集団3(個体数N3) × × × × × × × × × × × × × × × × × × × × × × × × この差を検定する。 標本1(個体数n1) 標本2(個体数n2) 標本3(個体数n3) × × × × × × この差をもとに
4
(μA ≠ μB ≠ μC 以外にμA = μB ≠ μC なども含まれる)
最初に、3つの母集団について考えてみる。 このとき、「母平均の間に差がない」という検定仮説は H0: μA = μB = μC となる。対立仮説は H1: μA ≠ μB ≠ μC ではなく(「だけではなく」の方が正確か?)、 H1: H0の否定 (μA ≠ μB ≠ μC 以外にμA = μB ≠ μC なども含まれる) この検定を、 「グループ間の分散がグループ内の分散に比べて差がない」か、 「グループ間の分散がグループ内の分散に比べて明らかに大きい」かということで分析する。
5
𝑥 = 1 𝑛 1 + 𝑛 2 + 𝑛 3 𝑗=1 𝑛 1 𝑥 1𝑗 + 𝑗=1 𝑛 2 𝑥 2𝑗 + 𝑗=1 𝑛 3 𝑥 3𝑗
標本1(個体数n1) この標本のデータ グループの平均 × 𝑥 11 , 𝑥 12 ,⋯, 𝑥 1 𝑛 1 𝑥 1 = 1 𝑛 1 𝑗=1 𝑛 1 𝑥 1𝑗 × 標本2(個体数n2) グループの平均 この標本のデータ × 𝑥 2 = 1 𝑛 2 𝑗=1 𝑛 2 𝑥 2𝑗 𝑥 21 , 𝑥 22 ,⋯, 𝑥 2 𝑛 2 × 標本3(個体数n3) グループの平均 この標本のデータ × 𝑥 3 = 1 𝑛 3 𝑗=1 𝑛 3 𝑥 3𝑗 𝑥 31 , 𝑥 32 ,⋯, 𝑥 3 𝑛 3 × 全体の平均 𝑥 = 1 𝑛 1 + 𝑛 2 + 𝑛 3 𝑗=1 𝑛 1 𝑥 1𝑗 + 𝑗=1 𝑛 2 𝑥 2𝑗 + 𝑗=1 𝑛 3 𝑥 3𝑗
6
全変動 = グループ間変動 + グループ内変動 全変動 グループ間変動 グループ内変動
𝑆 𝑇 = 𝑖=1 3 𝑗=1 𝑛 𝑖 𝑥 𝑖𝑗 − 𝑥 2 全変動 グループ間変動 グループ内変動 𝑆 𝐺 = 𝑖=1 3 𝑛 𝑖 𝑥 𝑖 − 𝑥 2 𝑆 𝐸 = 𝑖=1 3 𝑗=1 𝑛 𝑖 𝑥 𝑖𝑗 − 𝑥 𝑖 2
7
𝑆 𝐺 𝑆 𝐸 𝑆 𝑇 分散分析表 変動要因 平方和 (変動) 自由度 不偏分散 F グループ間変動 𝑔−1 𝑆 𝐺 𝑔−1
F グループ間変動 𝑆 𝐺 𝑔−1 𝑆 𝐺 𝑔−1 𝑆 𝐺 𝑔−1 𝑆 𝐸 𝑛−𝑔 グループ 内変動 𝑆 𝐸 𝑛−𝑔 𝑆 𝐸 𝑛−𝑔 全変動 𝑆 𝑇 𝑛−1 この不偏分散の比が、検定に用いられるF統計量である
8
(出典: 大屋幸輔『コアテキスト統計学』238ページ)
分散分析の例 全国展開している家電量販チェーン店の大手4社A,B,C,Dはそれぞれの出店地域で互いに価格競争をしており、それぞれ「一番安い」と宣伝している。 ある年の夏に特定メーカーの特定機種のエアコンを各店舗で調査したところ、表のようになった。 4社のエアコン価格は同じといえるであろうか? (出典: 大屋幸輔『コアテキスト統計学』238ページ) (単位: 万円) A 7.1 7.5 7.4 7.7 7.8 7.0 B 7.2 7.3 7.6 C 7.9 D 6.9
9
A,B,C,Dのそれぞれの平均を、 μA, μB, μC, μD とすると、検定仮説は
H0: μA = μB = μC = μD となる。分散分析表は下のようになる。 求められた分散比(F統計量) は3.393であり、自由度(3,28)のF分布の片側95%の臨界値 を上回るので、H0を棄却する。(P値が0.05を下回ることからもこの結論が言える) よって、エアコンの価格は同じとはいえない。
10
4社の間で平均価格が等しくないということは分かった。
では、どの社とどの社が等しくて、どの社とどの社が異なるのか? これを調べることは次のステップ、多重比較といわれる問題になる。
11
Excelの分析ツールをはじめとする、回帰分析をおこなうソフトウエアでは、仮説検定の際にp値が表示される。
Similar presentations
© 2024 slidesplayer.net Inc.
All rights reserved.