公衆衛生学 疫学デザインと健康指標 2008.7.15.

Slides:



Advertisements
Similar presentations
橋本. 階級値が棒の中央! 階級値 図での値 階級下限階級上限
Advertisements

5 章 標本と統計量の分布 湯浅 直弘. 5-1 母集団と標本 ■ 母集合 今までは確率的なこと これからは,確率や割合がわかっていないとき に, 推定することが目標. 個体:実験や観測を行う 1 つの対象 母集団:個体全部の集合  ・有限な場合:有限母集合 → 1つの箱に入っているねじ.  ・無限な場合:無限母集合.
第6回 適合度の検定 問題例1 サイコロを 60 回振って、各目の出た度数は次の通りであった。 目の出方は一様と考えてよいか。 サイコロの目 (i) 観測度数 : 実験値 (O i ) 帰無仮説:サイコロの目は一様に出る =>それぞれの目の出る確率 p.
看護学部 中澤 港 統計学第5回 看護学部 中澤 港
Lesson 21. 健康政策と疫学 §B. 集団データを用いた 疫学研究 疫学概論 集団データを用いた疫学研究
確率・統計Ⅰ 第12回 統計学の基礎1 ここです! 確率論とは 確率変数、確率分布 確率変数の独立性 / 確率変数の平均
保健統計 橋本.
社会調査とは何か(3) 調査対象者の選定方法
検定 P.137.
疫学概論 現代生命表 Lesson 7. 生命表 §B. 現代生命表 S.Harano,MD,PhD,MPH.
疫学概論 コウホート生命表 Lesson 7. 生命表 §A. コゥホート生命表 S.Harano,MD,PhD,MPH.
第37回日本看護研究学会学術集会 シンポジウムII 20011/8/8(月)(デブの日)14:40~16:40 中山和弘(聖路加看護大学)
分布の非正規性を利用した行動遺伝モデル開発
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
4.「血液透析看護共通転院サマリーVer.2」 の説明
疫学概論 母集団と標本集団 Lesson 10. 標本抽出 §A. 母集団と標本集団 S.Harano,MD,PhD,MPH.
新潟県の自殺の概要 (平成23年) 新潟県精神保健福祉センター 【人口動態統計と警察統計の違い】
メタボリック症候群(MetS)の有無と、成人以降の体重増加とCKDの関連
研修1 組織の規範について 東京コンサル株式会社 担当:事変.
本時の目標 標本調査の意味を知り、全数調査と標本調査の違いを理解する。
保健学習の進め方・指導案の書き方 さいたま市立三橋小学校   豊島  登.
疫学(Epidemiology) 第4回 標本抽出法 誤差やバイアスの制御 中澤 港(内線1453)
一般住民の大腿骨近位部骨折発症率で 認められる地域差は、 血液透析患者でも認められる
疫学概論 無作為化比較対照試験 Lesson 14. 無作為化臨床試験 §A. 無作為化比較対照試験 S.Harano,MD,PhD,MPH.
A 「喫煙率が下がっても肺ガン死亡率が減っていないじゃないか」 B 「喫煙を減らしてもガン減るかどうか疑問だ」
サラリーマンのリスク 万一の時のリスク 病気・ケガのリスク 長生きのリスク ―サラリーマンのリスクは大別して3つ!― 万一の時の
健康寿命について H27.1健康づくり課作成 ○健康寿命とは… 一般に、ある健康状態で生活することが期待される平均期間またはその指標の総称
因果関係3原則 2009年月曜日・3時限 社会理論と調査法.
計算値が表の値より小さいので「異なるとは言えない」。
疫学概論 異なった集団での率の比較 Lesson 5. 率の調整 §A. 異なった集団での率の比較 S.Harano,MD,PhD,MPH.
橋本 保健統計演習への準備.
Study Design and Statistical Analysis
疫学概論 患者対照研究 Lesson 13. 患者対照研究 §A. 患者対照研究 S.Harano,MD,PhD,MPH.
@Minako Wakasugi, MD, MPH, PhD
土木計画学 第6回(11月9日) 調査データの統計処理と分析4 担当:榊原 弘之.
春の統計学・計量経済学勉強会 第1回:2017年2月21日(火) 市野泰和
疫学概論 患者対照研究 Lesson 13. 患者対照研究 §A. 患者対照研究 S.Harano,MD,PhD,MPH.
疫学(Epidemiology) 第3回 疫学研究のデザイン 中澤 港(内線1453)
疫学概論 横断研究 Lesson 11. 記述疫学 §A. 横断研究 S.Harano,MD,PhD,MPH.
一般住民と比較した米国透析患者の標準化自殺率比(SIR) 表.一般住民と透析患者の年齢階級別死亡者数
疫学概論 間接調整法 Lesson 5. 率の調整 §C. 間接調整法 S.Harano,MD,PhD,MPH.
疫学概論 交絡 Lesson 17. バイアスと交絡 §A. 交絡 S.Harano, MD,PhD,MPH.
食中毒と疫学調査の統計 ~2×2表~ 岡山理科大学 山本英二 2002/02/20.
ゲノム科学概論 ~ゲノム科学における統計学の役割~ (遺伝統計学)
社会学部 模擬授業 社会調査から見る日本社会 グラフからよみとれること 社会学科准教授 村瀬洋一
疫学概論 疾病の自然史と予後の測定 Lesson 6. 疾病の自然史と 予後の測定 S.Harano,MD,PhD,MPH.
疫学概論 バイアス Lesson 17. バイアスと交絡 §A. バイアス S.Harano, MD,PhD,MPH.
三大生活習慣病の死亡率の推移 宮崎県では昭和57(1982)年以降、がんが死亡原因の第1位となっています。
疫学概論 直接法と間接法の相違 Lesson 5. 率の調整 §D. 直接法と間接法の相違 S.Harano,MD,PhD,MPH.
高齢慢性血液透析患者の 主観的幸福感について
疫学概論 情報の要約 Lesson 3. 情報の要約 (率、比、割合) S.Harano,MD,PhD,MPH.
子どもに対する 生活習慣病予防の 取り組み           健康情報分析学            三輪 夕起.
疫学初級者研修  ~2×2表~ 平成12年2月14日(月) 13:00~ 岡山理科大学情報処理センター.
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
社会学部 模擬授業 社会調査から見る日本社会 グラフからよみとれること 社会学科准教授 村瀬洋一
社会学部 模擬授業 社会調査から見る日本社会 グラフからよみとれること 社会学科准教授 村瀬洋一
クロス表とχ2検定.
先進予防医学共同専攻臨床疫学 臨床疫学とは 現在の取り組みと成果 研究材料・手法 未来のあるべき医療を見つめて改革の手法を研究します。 特徴
疫学概論 方法論的問題点(患者対照研究) Lesson 13. 患者対照研究 §B. 方法論的問題点 S.Harano,MD,PhD,MPH.
「カテゴリ変数2つの解析」 中澤 港 統計学第7回 「カテゴリ変数2つの解析」 中澤 港
Lesson 4. 罹患と死亡の指標 §G. YPLLとQOLの測定 疫学概論 YPLLとQOLの測定
疫学概論 寄与危険度 Lesson 15. 関連性の測定 §D. 寄与危険度 S.Harano,MD,PhD,MPH.
疫学概論 疫学研究の目的 Lesson 1. 疫学研究 §A. 疫学研究の目的 S.Harano,Md.PhD,MPH.
疫学保健統計 ~テスト対策~ 群馬医療福祉大学 看護学部 2年 ○○○優衣.
疫学概論 §C. スクリーニングのバイアスと 要件
疫学概論 横断研究 Lesson 11. 記述疫学 §A. 横断研究 S.Harano,MD,PhD,MPH.
衛生委員会用 がんの健康講話用スライド.
確率と統計 年1月7日(木) Version 3.
疫学概論 臨床試験の種類 Lesson 14. 無作為化臨床試験 §B. 臨床試験の種類 S.Harano,MD,PhD,MPH.
実都市を対象とした初期マイクロデータの 推定手法の適用と検証
Presentation transcript:

公衆衛生学 疫学デザインと健康指標 2008.7.15

今日の担当 藤井良宜 宮崎大学教育文化学部 専門 生物統計学 質問事項など 数学教育講座 現在の研究テーマ 宮崎大学教育文化学部403号室 今日の担当 藤井良宜 宮崎大学教育文化学部 数学教育講座 専門 生物統計学 現在の研究テーマ コホート内症例対照研究の解析方法とデザイン 質問事項など 宮崎大学教育文化学部403号室 E-mail : yfujii@cc.miyazaki-u.ac.jp Webページ:http://www.miyazaki-u.ac.jp/~yfujii/ Homepage/ph/publichealth.html

今日のテーマ 疫学研究のデザイン 介入研究 コホート研究 ケースコントロール研究 健康指標 死亡率,有病率 年齢調整死亡率とSMR 罹患率

疫学とは? 明確に規定された人間集団の中で出現する健康関連のいろいろな事象の頻度と分布およびそれらに影響を与える要因を明らかにして,健康関連の諸問題に対する有効な対策樹立に役立てるための科学 (日本疫学会1996年)

人間集団 因果関係? 一つの要因だけで 説明できない場合が多い 頻度や分布 どれくらいの頻度で病気が発生しているのか? どこで病気が発生しているのか? いつ病気は発生しているのか? 病気の要因は何か? どのような対策を採ればよいのか? 因果関係がわからなくても 対策は可能

ジョン・スノー 19世紀半ば 英国のビクトリア女王時代の麻酔医 コレラの対策を考える 死亡した人の共通点を探る 水道の汚染が原因と推測 ヒント コレラ多発地域から離れた地域の住民でコレラで死亡していた者がいた その人たちは,汚染地域に水を買いに来ていた

原因は一つか? 初期の疫学 複雑な要因が絡み合った疾患は? 病原菌の発見,ウイルスの発見 原因が特定できた 環境要因 遺伝要因 複雑に要因が絡み合っている? その中で対策を立てたい 生活習慣病

原因追求のための 研究法 介入研究 コホート研究 患者対照研究 ある種の介入を行った集団と、そうでない集団を比較する ある集団をいろいろな調査を行いながら追跡していく。途中の状況の違いと疾病状況の比較をする 患者対照研究 実際に疾病の発生した患者とそうでない人を比較して、その特性の違いを明らかにする。

研究の難易度と信憑性 基本的には、 難しさ 介入研究>コホート研究>患者対照研究 信憑性 ある程度、患者対照研究で狙いを絞る必要がある。

介入研究例(仮想) ある薬が効果があるかどうか,を調べたい。 投与群 追跡 患者群 回復に向かった割合 非投与群 スタート時点 終了時点

コホート研究例(仮想) 内科の看護師と外科の看護師の間である疾病の発症率が異なるのかどうか、を調べたい。 内科の 看護師 追跡 疾病発生率を比較する スタート時点で集団や交絡因子を特定する 外科の 看護師 もちろん、交絡因子への対処が必要 交絡因子や原因因子は できるだけ反復測定 スタート時点 終了時点

基本的な分析 現実には、 交絡因子の対処が必要 最後まで、みんな観測されたか? 他の疾患での死亡 追跡不能例はないか? 罹患割合で比較すると、  外科  6.7%  内科  5.0% 外科のほうが罹患割合は高そうであるが、 明確に言うには、統計的検定が必要

観測期間の違いへの対処 他の疾患での死亡や追跡不能の人の対処をどうするか 総観測期間を調べる 3.2+4.5+3.8+4.3+5.0 3.2年 4.5年 × 総観測期間を調べる 3.2+4.5+3.8+4.3+5.0 =20.8 (人年) 3.8年 × 4.3年 × 死亡数を調べる 3人 5.0年 脱落 死亡 20.8 3 = 0.14  × この値を罹患率という

患者対照研究例(仮想) 乳児の疾患の原因として、妊娠期間中の母親の行動等を考えたい。 疾患を ある因子 持つ乳児 の分布 さかのぼって調査する 比較する ある因子 の分布 疾患を 持たない 乳児 妊娠期間 研究スタート

データ例(仮想) 乳児の疾患とある薬の服用の関連を調べたい。 疾患ありの乳児と疾患なしの乳児を比較して、薬の服用の有無を調べた。 患者の方が、薬の服用した乳児の割合が高い。

オッズ比 患者対照研究では,オッズ比が関連性の指標として用いられる オッズ比

オッズ比の解釈 コホート研究の場合 患者 非患者 400人 薬を服用した乳児 2000 罹患割合20% 1600人 患者 非患者 300人 薬を服用していない乳児 3000 罹患割合10% 2700人

オッズ比の解釈 患者対照研究の場合 患者対照研究では、患者はすべて調べて、対照者は非患者の中からサンプルを取ることが多い。 患者 400人 服用していない乳児 服用した乳児 患者 400人 300人 そのまま 患者 400人 300人 サンプリング 非患者 非患者 1600人 2700人 1600a人 2700a人 サンプリング率 a とする。

オッズ比の解釈 コホート研究と患者対照研究 オッズ比は、 この値は、 服用した乳児の中での罹患割合をp 服用していない乳児の中での罹患割合をq とすると、 と一致する。 例では、p=0.2, q=0.1より =2.25

オッズ比の解釈 数の表す意味 オッズ比の値によって、次のように解釈する。 1より大きいとき、 薬を服用した乳児の ほうが罹患しやすい   薬を服用した乳児の   ほうが罹患しやすい 1のとき   薬の服用は罹患に   影響しない 1より小さいとき   薬を服用していない乳児   の方が罹患しやすい 正確には、観測値はバラツキがあるので、信頼区間や検定の考え方が必要

患者対照研究は 特殊な考え方か? 意外に、日常生活ではこのような考え方を用いているのではないか? 長生きの人たちの生活を調べる お金持ちと普通の人の違いを調べる 受験で成功した人と失敗した人の違いを見る など ただし、多くの場合対照のとり方について深く考えられていない。(時には自分自身)

対照の選択 患者対照研究では、対照をどのように選択するのか、という点が一番難しい。 原則的には、 患者集団を特定する。 病気を発症したら、患者集団に入ったであろう人々の集団を考える。 その集団の中で患者集団に入っていないひとの中から無作為に抽出する。

交絡 病気の原因を探る場合には、一つの要因だけが原因となるわけではない。 本当の原因ではなくても、見かけ上原因のように見える場合もある。このような現象を交絡といい、交絡をもたらす因子を交絡因子という。 飲酒 喫煙 疾病発生

仮想例 疾病発生 多量飲酒 多量飲酒 喫煙 喫煙 疾病発生 多量飲酒と喫煙には 関連がある 喫煙は疾病発生に影響する

喫煙で層別してみよう 疾病発生 多量飲酒 喫煙群 非喫煙群

交絡因子の特徴 交絡因子は、その存在を意識しないと調べることはできない。 見かけ上の関連だけが観測される できるだけ、交絡因子となりうるもの(潜在的な交絡因子)は、研究においては対処したい 観測して調整する マッチングを行う ランダム割付によって、影響を除去する 観察研究 患者対照研究 介入研究

患者対照研究での 交絡因子の調整 対照をサンプリングする際には、 マッチングとは、できるだけ患者と条件が同じ人を選ぶ。 交絡因子で層別してサンプリングをする。 交絡因子でマッチングをする。 マッチングとは、できるだけ患者と条件が同じ人を選ぶ。 たとえば、年齢、性別、居住地などをあわせていって、対象を選ぶ。 マッチングを行うと,その因子の影響は推定できないなどの問題もある。

交絡因子をどう取り扱うか、 それが研究の大きなポイントとなる 背景をしっかり把握しておく。 潜在的交絡因子をピックアップする。 どのような対処するかを考える。

健康指標 死亡率,有病率 年齢調整死亡率とSMR 罹患率

病気の発生を どのようにつかむのか? たとえば,宮崎県での病気発生を知りたい はっきりわかるのは,死亡率 死亡率を調べる 粗死亡率 年齢調整死亡率 SMR 有病率や罹患率は,集団を特定する必要がある

宮崎県の死因順位 (平成11年の統計) 1) ? 2)心疾患 3)脳血管疾患 4)肺炎 5)不慮の事故 6)? 7)老衰 8)腎不全 悪性新生物 1) ? 2)心疾患 3)脳血管疾患 4)肺炎 5)不慮の事故 6)? 7)老衰 8)腎不全 9)慢性閉塞性肺疾患 10)肝疾患 たとえば、悪性新生物での死亡率はなぜ高いのだろうか? 自殺 他の死因に比べたら高い 全国的な傾向と比べると?

死因の分類 WHO 日本では、上の分類に準拠した 詳しくは、国民衛生の動向を参照せよ。 疾病及び関連保健問題の国際統計分類 疾病、傷害及び死因分類表 詳しくは、国民衛生の動向を参照せよ。

死亡率の計算 粗死亡率(悪性新生物) 11年度の死亡数 2758人 総人口 1175006人(平成11年10月1日現在) 全国でも、悪性新生物が死亡率1位 粗死亡率(悪性新生物) 11年度の死亡数 2758人 総人口 1175006人(平成11年10月1日現在) ただし、死亡率計算では、1174000人を用いている 死亡率=2758 / 1174000=0.0023492… =234.9 (人口10万人当たり) 全国の死亡率は、231.6 (人口10万人当たり) 全国平均に比べると、少し高いがそれほどの差ではない

他の死因は 心疾患 脳血管疾患 宮崎県 134.4 全国 120.4 宮崎県 125.2 全国 110.8 宮崎県 134.4 全国 120.4 脳血管疾患 宮崎県 125.2 全国 110.8 この2つの死因は、前年度よりも増加している。 原因は何だろう?

原因を探る ある程度、死亡率の高い集団を特定するために、次のようなことを考える。 年齢別で調整する。 性別で分ける。 地域ごとに分ける。 年齢分布の違いによって死亡率の違いが出ていないか? 性別で分ける。 地域ごとに分ける。 年齢調整死亡率 死亡率の高い集団が特定されれば、 その集団の特徴を探っていく。 より細かい分析へ

年齢調整死亡率 全体的な傾向を知る上で、年齢分布を調整した死亡率が使われる。 2つの年齢調整死亡率 直接法 間接法 対象集団が、基準集団と同じ人口分布である場合の死亡率を計算する。 間接法 年齢別死亡率が基準集団と同じであると仮定をした場合の死亡数と、実際の死亡数を比較する。 間接法は、対象集団の年齢別死亡率は必要としない。

年齢調整死亡率(直接法) を計算するには 準備すべきもの 計算方法 基準集団をどうするのか? 基準集団の年齢階級別人口 対象集団の各年齢階級別死亡率 計算方法 「昭和60年モデル人口」が使われることが多い 対象集団の 年齢階級死亡率 × 基準集団の 年齢階級別人口 の和 基準集団の人口総数

昭和60年モデル人口 昭和60年の国勢調査人口をもとに、ベビーブームなどの極端な増減を補正し、1000人単位の概数として、「昭和60年モデル人口」が基準人口として使われることが多い

例 平成11年度宮崎県男性 悪性新生物による死亡 例 平成11年度宮崎県男性 悪性新生物による死亡 基準人口×年齢階級別死亡率 ÷100 注)100で割るのは、死亡率が10万人当たりだから 粗死亡率   302.7 年齢調整死亡率(直接法)

年齢調整死亡率(間接法) を計算するには 準備すべきもの 計算方法 基準集団をどうするのか? 対象集団の年齢階級別人口 基準集団の各年齢階級別死亡率 対象集団での死亡数(年齢階級別である必要はない) 計算方法 対象集団の観察死亡数 × 基準集団の死亡率 対象集団の期待死亡数

対象集団の 期待死亡数とは 間接法では、基準集団として日本全国のデータが使われることが多い。 基準集団の 年齢階級死亡率 × 対象集団の 年齢階級別人口 の和 注)直接法の期待死亡数と似ているが、基準集団と対象集団が入れ替わっている 間接法では、基準集団として日本全国のデータが使われることが多い。 この場合、対象集団については年齢階級別人口と死亡数がわかれば計算可能

間接法の場合には、 SMRも用いられる SMR(標準化死亡比) 対象集団の観察死亡数 × 100 対象集団の期待死亡数 小さければ、死亡率が低い。 基準集団との比較だけでなく、いろいろな集団について、 SMRを計算して比較する場合が多い。

例 平成11年度宮崎県男性 悪性新生物による死亡 例 平成11年度宮崎県男性 悪性新生物による死亡 宮崎県男性人口 ×年齢階級別死亡率 ÷100000 注)ここでは、宮崎県の人口はH12.10のデータを用いている 死亡数  1680 全国死亡率   294.3 年齢調整死亡率(間接法)

SMRの計算    老衰、男性、保健所別 SMRの高い地域では,年齢調整後の死亡率が高い

有病割合と罹患割合 ある期間の間に,新規に発生した患者の割合 コホート集団 有病割合は,1時点での 有病者数の割合を表す 新規発生した 患者 追跡 ある期間の間に,新規に発生した患者の割合 コホート集団 有病割合は,1時点での 有病者数の割合を表す

観測期間と罹患率 他の疾患での死亡や追跡不能の人の対処をどうするか 総観測期間を調べる 3.2+4.5+3.8+4.3+5.0 3.2年 4.5年 × 総観測期間を調べる 3.2+4.5+3.8+4.3+5.0 =20.8 (人年) 3.8年 × 4.3年 × 罹患数を調べる 3人 5.0年 脱落 罹患 20.8 3 = 0.14  × この値を罹患率という