次期地下実験用検出器の製作 中村輝石(京大理) NEWAGE:24 次期地下実験に向けて 安定動作 ドリフト長最適化 シミュレーション JPS秋季大会 京都産業大学 2012/09/14 NEWAGE:24 次期地下実験用検出器の製作 中村輝石(京大理) 谷森達、身内賢太朗、窪秀利 Parker Joseph、園田真也 高田淳史、水村好貴、水本哲矢 西村広展、澤野達哉、松岡佳大 古村翔太郎、佐藤快、中村祥吾 次期地下実験に向けて 安定動作 ドリフト長最適化 シミュレーション まとめ Hello. My name is Kiseki Nakamura, and I'm first year of doctor course in Kyoto University. In Kyoto university, we promote the direction-sensitive dark matter search experiment, name "NEWAGE". I will talk about this experiment. And using low pressure gas, the sensitivity of dark matter is expected to be improve. So today, I talk low pressure gas operation in detail.
KISEKI.N>stability _ Hello. My name is Kiseki Nakamura, and I'm first year of doctor course in Kyoto University. In Kyoto university, we promote the direction-sensitive dark matter search experiment, name "NEWAGE". I will talk about this experiment. And using low pressure gas, the sensitivity of dark matter is expected to be improve. So today, I talk low pressure gas operation in detail.
ラドン除去システム ガス循環+冷却活性炭 冷却:ラドンの液化 活性炭:ラドンを吸着 ①金属に微量含まれるウランが崩壊(永年平衡なので一定) ラドン除去システム ①金属に微量含まれるウランが崩壊(永年平衡なので一定) ②気体なのでガス中に侵入 ③α崩壊してバックグラウンドに 容器の壁 検出領域 (76torr CF4) U Rn Rn α崩壊 ガス循環+冷却活性炭 冷却:ラドンの液化 活性炭:ラドンを吸着 循環ポンプ 500ml/min 冷却機 200K 活性炭160g ・ 螺旋部:60g ・ 円筒部:100g
密閉蓋 新 旧 地下運用には長期安定性(1ヶ月) 温度変動:~1K/月 従来と同程度 圧力変動:~3torr/月 冷媒量の変動:~1cm/月 密閉蓋 ヒーター 温度計 地下運用には長期安定性(1ヶ月) 温度変動:~1K/月 従来と同程度 圧力変動:~3torr/月 冷媒量の変動:~1cm/月 昔は3cm/月 一ヶ月後も霜はなし どうしても隙間ができる 冷媒につかる部分 新 旧
ラドン除去能力 ラドン崩壊のα粒子(~6MeV)の時間変化 ラドンレート:~1/20 ラドン除去能力はOK ラドン除去能力 ラドン崩壊のα粒子(~6MeV)の時間変化 ラドンレート:~1/20 ラドン除去能力はOK 旧蓋よりもラドン除去能力が良い <-活性炭交換の影響? 活性炭なし >3000keV 冷却活性炭(10ml/min) >9cm 冷却活性炭(500ml/min)旧蓋 ラドン事象の選別条件 冷却活性炭(500ml/min)新蓋 ガス交換からの日数
KISEKI.N>stability KISEKI.N>optimize drift length _ Hello. My name is Kiseki Nakamura, and I'm first year of doctor course in Kyoto University. In Kyoto university, we promote the direction-sensitive dark matter search experiment, name "NEWAGE". I will talk about this experiment. And using low pressure gas, the sensitivity of dark matter is expected to be improve. So today, I talk low pressure gas operation in detail.
ドリフト長の最適化① ドリフト距離が長いと ターゲットが増える[利点] 角度分解能の悪化[欠点] 有意度の最も高いドリフト長を求めたい ドリフト長の最適化① ドリフト距離が長いと ターゲットが増える[利点] 角度分解能の悪化[欠点] 異なるドリフト長における 角度分解能(JPS春) 0-30 0-40 0-50 有意度の最も高いドリフト長を求めたい (そして、その検出器を作って測定)
ドリフト長の最適化② よくある仮定 暗黒物質:銀河系にボルツマン分布 相互作用:原子核と弾性散乱 cygnus DM nuclear ドリフト長の最適化② v0=220[km/s] vesc=650[km/s] vE=244[km/s] ρ=0.3 σSD0=100[pb] MDM=100[GeV] 標的: 19F よくある仮定 暗黒物質:銀河系にボルツマン分布 相互作用:原子核と弾性散乱 θ cygnus DM nuclear quenching エネルギー分解能 50-100keVのcos分布 角度分解能40度 前後判定しない 2-binにする
ドリフト長の最適化③ 有意度を計算(角度分解能ごと、各ドリフト長でのexposureごと) ドリフト長の最適化③ 有意度を計算(角度分解能ごと、各ドリフト長でのexposureごと) cosθ分布で2-binをフラットと区別できるかどうか 測定時間:3ヶ月 有意度の角度分解能依存性 最適なドリフト長 30cm(現行) 40cm(8度以上の改善) 3ヶ月測定 角度分解能はDAQモードの変更で改善の余地あり : 現行の角度分解能 : 10度改善した場合 : 20度 〃
KISEKI.N>stability KISEKI.N>optimize drift length KISEKI.N>simulation _ Hello. My name is Kiseki Nakamura, and I'm first year of doctor course in Kyoto University. In Kyoto university, we promote the direction-sensitive dark matter search experiment, name "NEWAGE". I will talk about this experiment. And using low pressure gas, the sensitivity of dark matter is expected to be improve. So today, I talk low pressure gas operation in detail.
シミュレーション:目的 DAQモードの変更や電子拡散の影響を調べたい ⇒検出器応答の入ったシミュレーション シミュレーション:目的 DAQモードの変更や電子拡散の影響を調べたい ⇒検出器応答の入ったシミュレーション ①Geant4で物理過程を振る 座標・エネルギー ②W値・quenching・統計 電子数 ③電子拡散 電子座標 ④離散化・回路応答・閾値 ストリップ・clock
シミュレーション:Geant4 ジオメトリは下図 中性子照射(252Cfのスペクトル)、照射位置は6ヶ所 検出領域はCF4ガス0.1atm VER:geant4.9.2.p03 ドリフトケージ CF4(検出領域) ポリエチ(ジグ) ドリフトプレーン 30cm 真空容器 50cm μ-PIC・GEM
シミュレーション:電子拡散 位置とエネルギーの情報から電子を発生させる 電子拡散はMAGBOLTZで n_0_0_43_1e8、55,69 シミュレーション:電子拡散 位置とエネルギーの情報から電子を発生させる 電子拡散はMAGBOLTZで エネルギー :465keV トラック長 :4.6mm ドリフト距離 :33.5cm エネルギー :158keV トラック長 :1.7mm ドリフト距離 :2.5cm z=-250に検出面がある n_0_0_43_1e8、55,69
シミュレーション:デジタル化 デジタル化 各ストリップごとに波形を求めVthでディスクリ ⇒hit 波形を積分 ⇒energy シミュレーション:デジタル化 デジタル化 各ストリップごとに波形を求めVthでディスクリ ⇒hit 波形を積分 ⇒energy DAQモード1(これまでの測定に使用) 各clock(10ns)ごとにXYの立ち上がりのコインシデンスを取る さらに各clockごとにストリップ番号の最大値と最小値を記録 DAQモード3(次に使用予定) 全てのhitストリップ番号と立ち上がりのclockを記録 DAQモード5(デバッグ中) 全てのhitストリップ番号と立ち上がりと立ち下がりを記録
シミュレーション:DAQモード3 トラックの変遷 G4の出力 電子発生&拡散 検出器応答 直線フィット
シミュレーション:DAQモード3 Preliminary Preliminary DAQモード3の角度分解能 前方散乱の見え具合で評価 実験と同様の手法 35度 q 252Cf neutron nuclear |cosθ|分布 角度分解能ごとのχ2値 DAQモード3 検出器応答を入れないGeant4データ σ=35度でぼかす σ=35でχ2minimum Preliminary Preliminary
ドリフト長の最適化(再) 角度分解能 DAQモード3で8度の改善(43度⇒35度) ドリフト長の最適化(再) 角度分解能 DAQモード3で8度の改善(43度⇒35度) さらなる改善の余地もあり(by DAQモード5 方向解析改善) 有意度の角度分解能依存性 ドリフト長は40cm ⇒業者に発注 3ヶ月測定 : 現行の角度分解能 : 10度改善した場合 : 20度 〃
まとめ システムの安定化 密封蓋により1ヶ月は放置可 ドリフト長の最適化 @0.1atm ターゲット質量と角度分解能を考慮⇒40cm 業者に発注中 シミュレータ 作製開始 もろもろ確認しつつ利用中 今後 神岡地下実験(今秋から) シミュレータのupdate I'd like to summarize today's talk. NEWAGE is the direction sensitive dark matter search experiment using MPGD. Using low pressure gas, we checked following 3 points. First, u-PIC worked with sufficient gain Second, we measured angular resolution and make sure of forward scattering at 50-100keV energy region. Third, we checked detection efficiency and obtained 60% at 50keV. Thus we find out that 50-100keV region is useful. Finally I’d like to introduce you NEWAGE’s image character “daakumatan”. She will appear at the events related to NEWAGE. Thank you.
I'd like to summarize today's talk. NEWAGE is the direction sensitive dark matter search experiment using MPGD. Using low pressure gas, we checked following 3 points. First, u-PIC worked with sufficient gain Second, we measured angular resolution and make sure of forward scattering at 50-100keV energy region. Third, we checked detection efficiency and obtained 60% at 50keV. Thus we find out that 50-100keV region is useful. Finally I’d like to introduce you NEWAGE’s image character “daakumatan”. She will appear at the events related to NEWAGE. Thank you.
まだだ、まだ終わらんよ
KISEKI.N>stability -> 1 month OK by new FUTA. KISEKI.N>optimize drift length -> 40cm. now making... KISEKI.N>simulation -> checking & using. FUTURE>under ground experiment from this fall >updating simulator Hello. My name is Kiseki Nakamura, and I'm first year of doctor course in Kyoto University. In Kyoto university, we promote the direction-sensitive dark matter search experiment, name "NEWAGE". I will talk about this experiment. And using low pressure gas, the sensitivity of dark matter is expected to be improve. So today, I talk low pressure gas operation in detail. _
シミュレーション:G4の出力確認 G4が吐くデータを確認 粒子の内訳 エネルギースペクトル F C e- N H He Be O e+
シミュレーション:DAQモード1 もろもろ確認&デバッグ中 エネルギースペクトルの比較 エネルギースペクトルの内訳 エネルギースペクトル (シミュレーション) measurement simulation sum 19F 12C e-
I'd like to summarize today's talk. NEWAGE is the direction sensitive dark matter search experiment using MPGD. Using low pressure gas, we checked following 3 points. First, u-PIC worked with sufficient gain Second, we measured angular resolution and make sure of forward scattering at 50-100keV energy region. Third, we checked detection efficiency and obtained 60% at 50keV. Thus we find out that 50-100keV region is useful. Finally I’d like to introduce you NEWAGE’s image character “daakumatan”. She will appear at the events related to NEWAGE. Thank you.
除湿 μ-PICの異常 電流が流れすぎ 500V印加できず ビニール+除湿機 湿度: 70% ⇒ 30% 除湿 湿度計 温度計 μ-PICの異常 電流が流れすぎ 500V印加できず ビニール+除湿機 湿度: 70% ⇒ 30% 電流:1000nA@15V ⇒ 30nA@500V 15V 除湿前 500V 除湿後
NEWAGE 暗黒物質の到来方向異方性 ↓ 反跳原子核の飛跡を捉えて暗黒物質検出 暗黒物質 μ-TPC 電子 原子核 μ-PIC CF4ガス New general WIMP search with an Advanced Gaseous tracker Experiment 暗黒物質の到来方向異方性 ↓ 反跳原子核の飛跡を捉えて暗黒物質検出 暗黒物質 μ-TPC 1) 電子 M=80GeV σ=0.1pb 予想されるcosθ分布 CF4ガス 原子核 θ DM Nucleus 40 [count/3m3/year/bin] 20 μ-PIC 2) 2)μ-TPC ・・・ Micro Time Projection Chamber 1)μ-PIC ・・・ Micro Pixel Chamber -1 1 cosθ
現状@神岡地下 40cm 方向に感度を持つ制限の更新 Phys.Lett.B686(2010)10 次はDAMA領域の探索 現状@神岡地下 方向に感度を持つ制限の更新 Phys.Lett.B686(2010)10 WIMP-陽子(SD)の制限曲線 σ[pb] 次はDAMA領域の探索 104 102 40cm 1 10 102 103 使用ガス:CF4 0.2atm mass [GeV/c2]
開発項目 低閾値(100keV⇒50keV) 低圧ガス(0.1atm) 原子核の検出効率 60%@50keV (JPS2011秋) 開発項目 低閾値(100keV⇒50keV) 低圧ガス(0.1atm) 原子核の検出効率 60%@50keV (JPS2011秋) 角度分解能 40°@50-100keV (JPS2011秋) ドリフト長の最適化 ←今回 ガンマ線の除去能力 ←今回 低BG(1/10) ラドン除去システム(冷却活性炭) ラドンレートの確認 ←今回 システムの安定性 ←今回 低放射能なモノ選び 飛跡の前後判定 TOTの測定 大型化(10倍) 60×60×50cm3 ×2 次期地下実験で実装予定
検出器@京都 Drift plane m-PIC サイズ : 30x30cm ピッチ : 400mm GEM (8分割) 使用ガス:CF4 0.1atm 45cm 0.5cm 50cm Drift plane m-PIC サイズ : 30x30cm ピッチ : 400mm At NEWAGE experiment, we use u-PIC for MPGD readout. Also, we put GEM above u-PIC to obtain sufficient gain. u-PIC have been introduced at previous session, so I omit detail of u-PIC. In u-TPC, we use CF4 gas because fluorine have relatively large cross-section to neutralino. And, gas pressure is low like 0.1 to 0.2 atm. GEM (8分割) サイズ : 32x31cm 厚み : 100mm 穴径 : 70mm ピッチ : 140mm 30cm 32cm 31cm
ガンマ線の除去能力 0.1atmでのガンマ除去能力を確認:5×10-8 @ 50keV ガンマ線の除去能力 137Cs 137CsからBGを引き算出した 電子の検出効率 99%C.L.のアッパーリミット 137Cs-run バックグラウンド-run PRELIMINARY 0.1atmでのガンマ除去能力を確認:5×10-8 @ 50keV (2010の0.2atmでは8×10-6 @100keV) ⇒ガンマ線の除去レベルに問題なし
ラドン除去システム
μ-PICのゲインのばらつきからの圧力変動の要請は~6torr ラドン除去システム 地下運用には長期安定性 ⇒ヒーターで冷却温度を制御 ・温度変動:~1K ・圧力変動:~3torr ヒーター 50cm μ-PICのゲインのばらつきからの圧力変動の要請は~6torr 冷却機CT-910 1days 温度[K] 210 温度制御なし 200 温度制御あり 90 圧力[torr] 80 70
ゲインカーブ m-TPCは0.1atmで動いた ゲインカーブ anode ( m-PIC 増幅 ) DGEM ( GEM 増幅 ) Drift Plane Drift -3.69kV m-TPCは0.1atmで動いた ゲインカーブ anode ( m-PIC 増幅 ) DGEM ( GEM 増幅 ) induction ( 透過率 ) GEMtop -500V GEM GEMbottom -280V Induction 5mm cathode GND m-PIC anode 515V gas gain gas gain gas gain GEM:-500/-280V anode:515V GEMbottom:-280V anode:515V DGEM:220V 2 times gain from 0.2atm We measured the gas gain to check u-TPC using 0.1atm gas works or not. The gas gain for each anode voltage behave monotonically increasing. But for delta-GEM and induction field, gain curves have maximal point. Using low pressure gas, gas gain behavior is not ordinary. At 0.1atm, necessary gain is twice of its at 0.2atm. In the graph, blue lines represent necessary gain level. Thus, we optimized u-PIC voltage and GEM voltage to these value. DGEM=GEMtop-GEMbottom EInduction=GEMbottom/5mm anode voltage[V] DGEM voltage[V] Einduction(Induction field)[V/mm] ゲインカーブはサチレート(電子の平均自由行程:数mm) 0.2atmから求まる必要ゲインには達した
Expected energy spectrum 閾値低下 Expected energy spectrum σ=1pb, M=100GeV, target:F エネルギー閾値 : 100keV -> 50keV -> 感度 : 約10倍 new threshold (plan) current threshold This graph is expected energy spectrum. If energy threshold decrease 100keV to 50keV, we became to detect red region in addition to blue region. So sensitivity for dark matter improve about 10 times. Then, how to make threshold lower? The answer is to using low pressure gas. If we reduce the pressure half, nuclear run 2 times longer. Then, we will obtain low energy tracks that couldn't detect because track was too short. In addition, being track longer, angular resolution is expected to improve. But low pressure gas have disadvantage that ionized electron density become half. So low pressure operation needs twice gas gain if we were to operate detector in the same condition to conventional pressure. 低圧ガス(152torr -> 76torr)で飛跡長 : 2倍 -> 低エネルギー(短い)飛跡に感度 -> 必要ゲイン : 2倍
角度分解能求め方 測定したcosθ分布をシミュレーションと比較 (シミュレーションは角度分解能ごとに生成) 252Cf neutron nuclear F-nucleus tracks 測定したcosθ分布をシミュレーションと比較 (シミュレーションは角度分解能ごとに生成) 252Cf Simulated distribution of cosθ (400-800keV) Distribution of cosθ(400-800keV) In order to detect the incoming direction of dark matter, our detector can detect forward scattering. We checked this ability by measuring angular resolution. We put neutron source Cf instead of dark matter, and measured scattered angle theta. On the other hand, we simulate same geometry assuming several angular resolution. This is the simulation data. If angular resolution is 0 degree, large asymmetric in cosine theta distribution is expected like black line. If angular resolution is 90 degree, the distribution become flat and we cannot distinguish to isotropic background. Comparing measured data to simulation, we obtained 49 degree angular resolution at 400-800keV energy region. χ2-values for each angle minimum Blue:measured Green:simulation(σ=49°)
角度分解能 エネルギーごとの角度分解能 新たに50-100keVの領域の角度分解能を求めた : 40[deg] angular resolution In order to detect the incoming direction of dark matter, our detector can detect forward scattering. We checked this ability by measuring angular resolution. We put neutron source Cf instead of dark matter, and measured scattered angle theta. On the other hand, we simulate same geometry assuming several angular resolution. This is the simulation data. If angular resolution is 0 degree, large asymmetric in cosine theta distribution is expected like black line. If angular resolution is 90 degree, the distribution become flat and we cannot distinguish to isotropic background. Comparing measured data to simulation, we obtained 49 degree angular resolution at 400-800keV energy region. Blue : This work (0.1atm) Red : Previous (0.2atm)
Expected energy spectrum 検出効率 測定したエネルギースペクトルとシミュレーションを比較 検出効率 : 0.6@50keV エネルギー閾値 : 100 -> 50keV angular resolution current threshold new threshold (plan) σ=1pb, M=100GeV, target:F Expected energy spectrum detection efficiency As stated, we checked forward scattering at 50-100keV region. And then, we measured the detection efficiency by comparing measured spectrum to simulation. We obtained 60% efficiency at 50keV. So, we might say that 50-100keV region is useful region.
energy fraction of space Dark Matter (DM) 200 Rotation curve MNRAS 249 (1991) 523 observed Rotation velocity of stars [km/s] 100 DM Rotation of stars in the galaxy is too fast ⇒ DM at galaxy Different distribution Mass to Baryon ⇒ DM at cluster of galaxy Observation of cosmological parameters ⇒ DM at cosmological scale ⇒ Non baryonic mass "Dark Matter" exist at various scale baryon gas Distance from GC[pc] 10 20 30 Cluster of Galaxy APJ 684 (2006) L109 Dark matter is unknown mass in space, and it's introduced to solve several problems. First example is rotation curve problem. In galaxy, stars are rotating. But the rotation velocity is not dump even outer region. This is inconsistent to Kepler's law. But assuming unvisible mass "dark matter", this rotation curve is explained. Second is difference of mass distribution and baryon distribution at collision region of cluster of galaxy. Color scale is X-ray observation and this indicates existence of baryon plasma. And, green contour is mass distribution observed from gravitational lenzing. From this image, we get the picture, collisionless dark matter go through, but baryon plasma delay because baryon plasma interact with each other. That means dark matter exist in cluster of galaxy. Third is observation of cosmological parameters like Cosmic Microwave Background, CMB. From cosmological parameter, dark matter exist 5 times of baryons in throughout universe. Thus, unknown mass "Dark Matter" exist in space at various scale. energy fraction of space WMAP/NASA
Feynman diagram nuclear recoil by WIMP DM candidate "WIMP" Weakly Interacting Massive Particle DM candidates WIMP axion sterile neutrino Q-ball ...etc Feynman diagram nuclear recoil by WIMP SUSY particle can be WIMP What's the dark matter? Several candidates are invented. WIMP is one of the dark matter candidate. WIMP have about 3 aspects, small cross section, stable, and large mass. These aspects satisfy that WIMP is dark matter. Recently SUSY, the theory beyond standard theory, is favored. And if lightest SUSY particle is chargeless, this SUSY particle ,called neutralino, can be WIMP. Neutralino is considerd to interact with nuclear by elastic scattering, even very low probability.
Radon affection to low energy cases Detect only partial energy of a-ray Radon emit a-ray between m-PIC and GEM
U chain, Th chain 3.824day 55.6sec
Large size NEWAGE2014 (BG×1/10 ・0.1m3年) NEWAGE 2019 (BG×1/100 ・1m3年)
Energy calibration Radiate thermal neutron to 10B plate in TPC 10B+n->7Li+4He + 2.78MeV 96% of 7Li become excitation state (0.48MeV) 4He energy : 1.46MeV Energy spectrum Red : Measured Blue : Simulation We set Boron plate in the TPC for energy calibration. Radiating thermal neutrons from Cf source to Boron plate, 1.46MeV He is produced. Boron plate have some thickness, so the energy spectrum of He run into the gas is continuous and have a cut-off at 1.46MeV. Also, right graph is the relation of energy to length. Black line is calculated by SRIM. Measured relation is consistent with SRIM calculation, and this plays cross check of calibration.
CF4 mean free path : several mm number density : 6*10E23/22.4/1E6 [/cm3]@1atm cross section : 1E-19 We set Boron plate in the TPC for energy calibration. Radiating thermal neutrons from Cf source to Boron plate, 1.46MeV He is produced. Boron plate have some thickness, so the energy spectrum of He run into the gas is continuous and have a cut-off at 1.46MeV. Also, right graph is the relation of energy to length. Black line is calculated by SRIM. Measured relation is consistent with SRIM calculation, and this plays cross check of calibration.
Angular resolution at each energy 200-400keV 100-200keV 50-100keV Blue:measured Green:simulation(s=44°) Blue:measured Green:simulation(s=47°) Blue:measured Green:simulation(s=37°) We measured angular resolution at another energy region. Then, we obtained angular resolution about 40 degree at whole energy region. Especially, using 0.1atm gas, we first detected the forward scattering at 50-100keV energy region. So, in dark matter search, we can decide direction above 50keV.
Detection efficiency 252Cf neutron Detection efficiency : ratio of measured to simulation 0.6 @50keV u-TPC 0.1atm 0.2atm
Aim pressure aim angular resolution aim
Drift Plane Drift -3.69kV GEMtop -500V GEM GEMbottom -280V cathode GND m-PIC anode 515V Induction 5mm gas gain We measured the gas gain to check u-TPC using 0.1atm gas works or not. The gas gain for each anode voltage behave monotonically increasing. But for delta-GEM and induction field, gain curves have maximal point. Using low pressure gas, gas gain behavior is not ordinary. At 0.1atm, necessary gain is twice of its at 0.2atm. In the graph, blue lines represent necessary gain level. Thus, we optimized u-PIC voltage and GEM voltage to these value.