第10週 その他の測位方法 自律航法とナビ 携帯電話測位 gpsOneの事例.

Slides:



Advertisements
Similar presentations
III. GIS データの作成. GIS はデータがなければ何もできない III. GIS データの作成 データ入手の二つの方法 1. 既存データの入手 長所:簡単,データの信頼性が保証されて いる 短所:費用がかかる,どんなデータでも入 手できるわけではない.
Advertisements

1 関西大学 サマーキャンパス 2004 関西大学 物理学教室 齊 藤 正 関大への物理 求められる関大生像 高校物理と大学物理 その違いとつながり.
反射波が支配的な状況下でのマルチパス誤差低減
Android と iPhone (仮題) 情報社会とコンピュータ 第13回
Introduction 初期位置算出時間(Time To First Fix): TTFFの短縮:
エリアメールの比較 従来の方式との差異について  鳥居秀徳.
これからの位置情報取得について GPS(DGPS) 屋内(超音波) コスト削減(ROSUM,AZIM) KG発表 2003/12/4.
USB2.0対応PICマイコンによる データ取得システムの開発
GPS観測 2006年度地球観測実習 ~新しい可能性を求めて~     新井隆太 大久保忠博 米田朝美        担当教官 宮崎真一.
『どこでも運用システム』の開発状況 (第二報) iPad版衛星状態監視システム (プロトタイプ) どこでも運用システムと他システムとの接続
 授業を設計する(その4) 情報科教育法 後期5回 2004/11/6 太田 剛.
GPS補強のための気圧高度計の補正 電子航法研究所 坂井 丈泰  惟村 和宣  新美 賢治.
神奈川大学大学院工学研究科 電気電子情報工学専攻
GPS携帯電話を用いた 大規模避難誘導システム
「データ学習アルゴリズム」 第3章 複雑な学習モデル 3.1 関数近似モデル ….. … 3層パーセプトロン
減衰自由振動の測定 実験装置と実験方法.
情報機器と情報社会のしくみ Web素材利用
SMSを利用した コミュニケーションシステムの開発
修士二年 宮﨑一樹 鶴田佳宏,加藤貴裕,永峰健太,上津原正彦,眞庭知成
みさと8m電波望遠鏡の性能評価 8m (野辺山太陽電波観測所より) (New Earより) 和歌山大学教育学部 天文ゼミ  宮﨑 恵 1.
センサノード 時刻同期と位置測定 浅川 和久 2008/11/16 センサノード 時刻同期と位置測定.
Low-Cost INS/GPS複合航法 に関する研究の進捗状況
登山の地形図とGPS パソコンと登山用地形図・GPS 三郷山の会 登山とPC勉強会 2012.9.1  三郷市立北公民館 三郷山の会 浦川明彦.
大きな数と小さな数の 感覚的理解 北村 正直.
画像工学 2011年10月6日 担当教員 北川 輝彦.
ITS(高度道路交通システム)とは何か?
携帯用グループナビゲーションの 実装とその評価
第7回 衛星測位の新しい動向 ・GPSの問題とバージョンアップ ・ロシアのGLONASS ・ヨーロッパのGalileo
東京海洋大産学官連携研究員/技術コンサルタント 高須 知二 Tomoji TAKASU
みさと8m電波望遠鏡の 性能評価 富田ゼミ 宮﨑 恵.
産業協力情報授業プロジェクト 宇宙と先進情報技術 ~GPSの活用~ 2時限目
フィールドセンシング Field Sensing Technologies
画像工学 2012年10月3日 担当教員 北川 輝彦.
CDMA (IS-95) 松下 温 (慶應義塾大学 理工学部).
第8週 高精度GPSの構築 位相測位の原理 通信システムの構築.
①浮上(RTB準備)→ 圧力センサー(水深)
新潟インターネット研究会 田中 秀明 GPS入門 新潟インターネット研究会 田中 秀明
小型INS/GPS 航法システムの開発 東京大学 工学系研究科 修士2年 成岡 優 ご紹介ありがとうございます。
第2回 GPS測位の原理 衛星測位の原理 GPS衛星システム GPSの信号システム GPSの測位方式.
添付図-1:課題⑦-2-1 「巨大都市・大規模ターミナル駅周辺地域における複合災害への対応支援アプリケーションの開発」
東京海洋大産学官連携研究員/技術コンサルタント 高須 知二 Tomoji TAKASU
TIME SIGNAL: 集合知を利用した赤信号点灯時間の取得手法
第6回 高精度GPSの構築 位相測位の原理 通信システムの構築.
誘導サインメタファを用いた キャンパス案内アンドロイドAR アプリの構築
状況に応じたユビキタスサービス起動 のための即興セレクタ
精密単独測位(PPP)による スタティック・キネマティック 測位精度の評価
MEMSセンサを用いたINS/GPS複合航法システム
空洞型ビーム軌道傾きモニターの設計 東北大学 M1 岡本 大典 .
GPSを使わないBebop Droneの 自動飛行
GPSと相対論 金野 幸吉.
AIを用いたドローンの 新たな姿勢制御方法に関する研究
IP over DVB-RCSの設計と実装
中京大学 電気電子工学科 白井研究室 T 久保田直樹
東京海洋大産学官連携研究員/技術コンサルタント 高須 知二 Tomoji TAKASU
アナログ と ディジタル アナログ,ディジタル: 情報処理の過程: 記録/伝送 と 処理 において, 媒体(メディア)の持つ物理量 と
ノイズ.
第8回 その他の測位方法 自律航法とナビ 携帯電話測位 gpsOneの事例.
GPSハッキングとGPS信号の弱点 信号が微弱 2万km彼方に100Wの電球があるのと同じレベル
第2回 GPS測位の原理 衛星測位の原理 GPS衛星システム GPSの信号システム GPSの測位方式.
マイコンプログラムの実際.
創造実習 (自由課題成果発表会) 障害物回避ロボット 10S6001 青森 太郎 10S6002 弘前 弘子.
1.85m電波望遠鏡 230GHz帯超伝導(SIS) 受信機の現況
それでは,室内向けレーザーレーダ用の「レーザーレーダパネル」について,その動作原理を説明します.
北大MMCセミナー 第68回 附属社会創造数学センター主催 Date: 2017年6月15日(木) 16:30~18:00
低軌道周回衛星における インターネット構築に関する研究
Uni Directional Link Routing 片方向通信路に於ける経路制御
ギガビット観測システムによる長基線測地 VLBI
電磁気学C Electromagnetics C 7/10講義分 電気双極子による電磁波の放射 山田 博仁.
アナログ と ディジタル アナログ,ディジタル: 情報処理の過程: 記録/伝送 と 処理 において, 媒体(メディア)の持つ物理量 と
北大MMCセミナー 第17回 Date:2013年12月16日(月) 16:30~18:00 ※通常とは曜日が異なります
Presentation transcript:

第10週 その他の測位方法 自律航法とナビ 携帯電話測位 gpsOneの事例

GPSの限界 今日,位置情報の計測とサービスの需要が高まる一方である。 測位の精度の向上と安定性の改善という2つのことを高く要求する. DGPSでは1m程度の精度が得られるため、人間の移動を測定するという意味では、精度十分であるが。 トンネル、地下道、高架下などや高層ビル街、街路樹の多い通りなど、測位のできない場所も多い。 利用環境に制約されない位置測定の必要な事例も多い そこでは、GPSとジャイロセンサを組み合わせた自律航法(Dead Reckoning)や携帯電話測位(Cellular-phone Positioning System:CPS)が役に立つ。

自律航法(Dead Reckoning)のシステム 方向センサ (コンパス/ジャイロ) GPS 地図 ナビ用コンピュータ 傾斜計 車速センサ ディスプレイ

自律航法システムの作動 コンパスは磁北方向を定める.しかし,コンパスの精度は周辺環境にある金属物体に影響される。 車両が斜面を動く時、コンパスは地球磁気場の垂直成分から影響を受けるため、正確に方向を示さない。その影響を取り除くために傾斜計を使う。 車速センサは、車輪にパルスセンサを取り付けて車の走行速度と走行距離を測る. 現在,方向センサにコンパスよりも精密なジャイロが使われる.

ジャイロの原理

自律航法の動作方法 ジャイロや速度センサだけでは、走行距離が長いと誤差が累積して、予定コースを外れてしまう。そこで、地図を持ち込み、車の表示が走行中の道路から離れないようにする。 さらに,自律航法では,走行中の道路を間違ってマッチングすると、迷子になる可能性がある。そこで、GPSを導入し、出発地や途中の経由地が正確にわかるようにする。

自律航法・地図・GPSを組み合わせたナビ まず手入力あるいはGPSによって出発地を設定する。 コンピュータはコンパスと傾斜計のデータを使って前進方向を推計する。 同時に車速パルスによって走行距離が計算される。 このように前進方向と走行距離から現在地が推計される。 コンパスと傾斜計に誤差があるため、距離が長ければコースから外れる。 そこで、推計した位置を地図と比較して、現在地を更新してよいかどうかを判断する。 たとえば、現在の位置は道路区間にあるか、当該道路は前進方向と一致するかなどを条件にするわけである。 条件が満たされる場合、現在地を更新し、次のナビゲーションをはじめる。 GPSの計測値が入ったら、それも同様に以上の条件で更新の可否を判別する。

単独GPSとジャイロ付きGPSの違い

自律航法ナビの応用問題 軌跡を一貫して追跡する必要のある業務システムでは、ジャイロセンサとGPSの組み合わせが不可欠である。 たとえば、空中写真測量や航空機レーザスキャナシステムでは、カメラやセンサの姿勢パラメータをリアルタイムで、高精度にトラッキングしなければならない。 また、都市部でリアルタイムに道路を調査するときに、衛星数が4つ以上確保できない場合もあるため、飛行機と同様にジャイロセンサの併用が有効である。 さらに、歩行者ナビゲーションのシステムでは、人が歩道を歩くことが多いことを考えると、GPSだけでは安定した測位ができないため、軽量、高精度のジャイロセンサが必須となる。

携帯電話測位の必要性 携帯電話基準局のサービスエリアは、都市部では数100mから数km、農村部では数kmから数10kmまであるため、それをもとにした携帯電話測位の精度が悪い。 そこで、1996年に米国連邦通信委員会(FCC)からE911という勧告が出された。それによると2001年までに緊急通報時の携帯電話の位置特定が95%の確率で150m以内となるように要求している。そこで、携帯電話の測位を開発する機運が急速に高まったわけである. 日本では2005年に全土に導入する予定.

携帯電話測位の原理 信号強度:受信した信号の強度から距離を推計する。開けた場所では精度が高い。都市域ではマルチパスの問題があり、誤差が大きくなる。 ・到達角度:大きなアンテナで到達信号の角度を測る。都市域では基準局が多いため、アンテナの大きさが大きくなくてもよい。 ・位相計測:受信した信号の位相を測る。位相は非常に正確に測れる。ただし、GPSと同じように整数値バイアスの問題がある。 ・時間計測:受信機が信号の到達時間を正確に計測する。到達時間は距離の関数であり、信号強度法より正確に測れる。

携帯電話測位の方式 セルフ方式 リモート方式 セルフ測位の原理は非常に簡単である。 電源入れると、携帯端末は1つの基準局と通信し、必要なシステム情報、たとえば基準局の位置、自分の近似位置、同期情報などを入手する。 そして、3~2個の基準局から到達時間を取得する。 これらの到達時間は位置計測値に変換される。 リモート方式 リモート測位では、まず,中央測位装置は、ユーザから特定のモバイルの測位要求を受ける。 この要求は複数の携帯端末を計測したり、特定の携帯端末の位置を今後3日間1分ごとに測位したりすることができる。 中央測位装置は携帯端末と基準局との間の往復時間を測定する。 そして、携帯端末は2番目の基準局との往復時間を計る。 これで2つの基準局との三角関係で位置を特定する。もし整数値バイアスが決まらないなら3つ目の基準局を探す。往復時間は、中央測位システムに送られ、位置が計算される。 そして、計算結果は、再びユーザに送られる。

携帯電話測位のメリット/デメリット 携帯電話で測位できると、既存の携帯電話の通信基盤を使うため、基盤整備のコストが抑えられる。信号が弱いなら基準局を増やせばよい。 また,携帯システムは既存の電波を利用するため、新たに電波を割り当てる必要がない。 さらに重要なのはユーザ数が非常に多いため、双方向通信を生かした新しいアプリケーションの登場が期待できることだ。 しかし、携帯電話システムは測位のために設計されたわけでないため、解決しなければならない課題も多い。 たとえば、携帯電話システムは1つの基準局からしか信号を受けないように設計されている。これは良好な三角形を望むという測量の基本要求と矛盾する。

gpsOneの測位(a)衛星3つの場合 GPS衛星 携帯基準局 携帯移動局

gpsOneの測位(b)衛星2つの場合 GPS衛星 携帯基準局 携帯移動局

gpsOneの測位(c)衛星1つ 携帯基準局 携帯移動局

gpsOneの測位(d)衛星なし 携帯基準局 携帯移動局

来週の知らせ 大学公務のため,来週,厳が授業に出てません. 最後のフィールド演習を行います. GPS測位+温度センサで,キャンパス内の地表面の温度分布を測定する. 温度測定の原理を早く知りたい人は,第11回のスライドを見てください. 7つのグループに分けて行動します.授業に遅刻しないでください. 詳しくは当日,SA(徳江と飯塚)の指示に従ってください.