セラミックス 第7回 6月4日(水) セラミックスの製造法.

Slides:



Advertisements
Similar presentations
セラミックス セラミックスの製造法 2 第 8 回 6月 11 日 ( 水). [2]セラミックスの種々の焼結法 (1)ホットプレス法(Hot Pressing:HP法)[:図 参 照] :カ-ボン製の型に原料粉末を入れ、 高周波加熱によりカ-ボン型を加熱し ながら加圧して焼結する方法 圧力:200~400kg/cm.
Advertisements

セラミックス セラミックスの物性 第 9 回 6月 1 7日 ( 水). セラミックスの物性 ーセラミックスの材料物性ー 機能大分類: ① 熱的機能 ② 機械的機能 ③ 生物・化学的機能 ④ 電気・電子的機能(含 磁気材料関連) ⑤ 光学的機能 ⑥ 原子力関連機能.
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
セラミックス 第10回 6月25日(水)  セラミックスの物性②.
ー 単位認定について - (レポート課題および期末試験について)
第13章 工具材料 工具材料:硬質合金(WC、TiC)、サーメットおよびセラミック。 13.1 硬質合金の燒結機構 13.2 硬質合金の性質
揺動成型機について.
医薬品素材学 Ⅰ 相平衡と相律 (1) 1成分系の相平衡 相律 クラペイロン・クラウジウスの式 (2) 2成分系の相平衡 液相―気相平衡
セラミックス 第3回目 4月 29日(水)  担当教員:永山 勝久.
セラミックス 第8回目 6月 8日(火)  ファインセラミックスの製造法 担当教員:永山 勝久.
セラミックス 第4回目 5月 13日(水)  担当教員:永山 勝久.
第10章 焼結体の構造 焼結体の構成:粒子、粒界、気孔 焼結体の物性を左右する微細構造パラメーター:
固体の圧電性.
セラミックス 第2回目 4月 22日(水)  担当教員:永山 勝久.
原始惑星系円盤の形成と進化の理論 1. 導入:円盤の形成と進化とは? 2. 自己重力円盤の進化 3. 円盤内での固体物質の輸送
セラミックス 第7回目 6月 1日(火)  担当教員:永山 勝久.
セラミックス 第9回 6月18日(水) セラミックスの物性.
固体電解コンデンサの耐電圧と漏れ電流 -アノード酸化皮膜の表面欠陥とカソード材料の接触界面-
第3章.材料の強化機構.
Niシリサイド電極形成過程の 高分解能断面像観察による評価
モンテカルロ法と有限要素法の連成による 焼結のマイクロ‐マクロシミュレーション
セラミックス 4月 18日(水)  担当教員:永山 勝久.
R&D Division, Polyplastics Co., Ltd. Technical Solution Center
4.イオン結合と共有結合 セラミックスの結合様式 [定義] (1)イオン結合・・・
セラミックス 第6回 5月27日(水).
セラミックス 第8回 6月10日(水) セラミックスの製造法 2.
地球惑星物性学1 ( ~) 参考文献: 大谷・掛川著 地球・生命 共立出版
前回の内容 結晶工学特論 第5回目 Braggの式とLaue関数 実格子と逆格子 回折(結晶による波の散乱) Ewald球
セラミックス 第7回 6月3日(水) ファインセラミックスの製造法.
セラミックス 第4回目 5月 7日(水)  担当教員:永山 勝久.
セラミックス 第4回目 5月 11日(火)  担当教員:永山 勝久.
6-1.レオロジー 固体・液体 フック固体(完全弾性体) ニュートン液体(理想液体) 応力ひずみ曲線が直線
原子核物理学 第4講 原子核の液滴模型.
第7章 複合材料.
セラミックス 第6回目 5月 25日(火)  担当教員:永山 勝久.
北大MMCセミナー 第20回 Date:2014年1月30日(木) 16:30~18:00 ※通常とは曜日が異なります
セラミックス 第11回目 7月4日(水).
Fig. Crystal structure of Nd2Fe14B
塑性加工 第1回 今日のテーマ 塑性変形とは(塑性変形した後どうなる?) (応力(圧力)とひずみ(伸び)、弾性変形) 金属組織と変形
前回の講義で水素原子からのスペクトルは飛び飛びの「線スペクトル」
22章以降 化学反応の速度 本章 ◎ 反応速度の定義とその測定方法の概観 ◎ 測定結果 ⇒ 反応速度は速度式という微分方程式で表現
地球惑星物性学1 ( ~) 参考文献: 大谷・掛川著 地球・生命 共立出版 島津康夫著・地球の物理 基礎物理学選書 裳華房
Appendix. 【磁性の基礎】 (1)磁性の分類[:表3参照]
セラミックス 第6回目 5月23日(水).
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
セラミックス 第9回 6月 15日(火) セラミックスの物性① 担当教員 永山 勝久.
課題演習B1 「相転移」 相転移とは? 相転移の例 担当 不規則系物理学研究室 松田和博 (准教授) 永谷清信 (助教)
課題 1 P. 188.
6.4.3電解法 (1)水溶液電解法 2種類: 直接法:板状の析出物→機械的に粉砕(Fe、Cr) *金属イオン濃度を低くする
セラミックス 第6回 5月21日(水) セラミックスの分類について①.
金属加工学 “材料に形を与える” 材料プロセス工学専攻 材料加工工学講座 湯川伸樹.
機械の安全・信頼性に関するかんどころ 機械製品に対する安全要求と設計方法 一般財団法人 機械振興協会 技術研究所.
◎熱力学の最も単純な化学への応用   純物質の相転移
課題演習B1 「相転移」 相転移とは? 相転移の例 担当 不規則系物理学研究室 八尾 誠 (教授) 松田和博 (准教授) 永谷清信 (助教)
◎ 本章  化学ポテンシャルの概念の拡張           ⇒ 化学反応の平衡組成の説明に応用   ・平衡組成       ギブズエネルギーを反応進行度に対してプロットしたときの極小に対応      この極小の位置の確定         ⇒ 平衡定数と標準反応ギブズエネルギーとの関係   ・熱力学的な式による記述.
これらの原稿は、原子物理学の講義を受講している
セラミックス 第5回目 5月 14日(水)  担当教員:永山 勝久.
Bi置換したCaMnO3の結晶構造と熱電特性
直接通電による抵抗発熱を利用した 金属粉末の半溶融焼結
3.建築材料の密度 密度の支配因子 原子量 原子の配列状態 一般的に原子量(原子番号)が大きいほど、密度は大きい
課題研究 P4 原子核とハドロンの物理 (理論)延與 佳子 原子核理論研究室 5号館514号室(x3857)
■ 背景 ■ 目的と作業内容 分子動力学法とフェーズフィールド法の融合による 粒成長の高精度解析法の構築 jh NAH
課題演習B1 「相転移」 相転移とは? 相転移の例 担当 不規則系物理学研究室 松田和博 (准教授) 永谷清信 (助教)
ガスセンサーの製作 [応用物理研究室] [藤井新太郎]
Au蒸着による酸化物熱電変換素子の内部抵抗低減化効果
第146回 G-COEセミナー 講 師:(独)産業技術総合研究所 ナノシステム研究部門 副部門長 山口 智彦先生
相の安定性と相転移 ◎ 相図の特徴を熱力学的考察から説明 ◎ 以下の考察
セラミックス 第3回目 4月 30日(水)  担当教員:永山 勝久.
Al液滴の凝固後の表面性状 材料研究室 金子 優美.
K2 = [ln K] = ln K2 – ln K1 = K1.
Presentation transcript:

セラミックス 第7回 6月4日(水) セラミックスの製造法

[1]セラミックスの焼結法 『焼結法(Sintering)とは何か』  『焼結法(Sintering)とは何か』   [定義]:粉末成形体を融点以下の温度に加熱して、粉末粒子が互いに表面拡散        (凝着,融着)して、多結晶体に変化する現象   (1)焼結体(多結晶体)の分類[・・・焼成状態による分類]       ①多孔質体(:ポ-ラス体)       ②普通焼結体       ③緻密体(気孔:内部ガスの残存に起因した空隙のない焼結体)         ・・・ニュ-セラミックス,ファインラミックス (界面拡散) ←従来型セラミックス(窯業製品)

  (2)焼結過程    ①焼結初期(:低温焼結)=焼結反応前期段階     ・・・焼成前の粉末成形体と変化は殆どない状態        (粉末粒子間に大小の空隙(隙間)があり、気孔率は30~50%程         度の多孔体)    ②焼結中期(:中温焼結)=焼結反応中期段階     ・・・粉末粒子間の界面拡散反応が進行し成形体の収縮に伴う        気孔の減少が開始する    ③焼結終期(:高温焼結)=焼結反応後期段階     ・・・粉末粒子間の気孔が消滅し、結晶粒が成長する        (粉末粒子どうしの界面反応(拡散)に伴う粒成長の発生)                 ↓    ex.Al2O3セラミックスの焼結過程に伴う       ①外観(成形体の形状)[:図3.4参照]       ②内部変化(成形体の密度,収縮率)[:図3.5参照]       ③組織(微細構造)変化[:図3.6参照]

図3.4 Al2O3セラミックスの焼成温度と  図3.5 Al2O3セラミックスの       外観変化(左から1000,1200,      焼成温度と(a)密度と       1400,1500,1600℃)      (b)収縮率

 図3.6 Al2O3セラミックスの焼成温度と        内部微細構造の変化

(3)焼結による粉末粒子の形状変化(:焼結反応の概念)[:図参照] 焼結による粉末粒子の形状変化:緻密焼結体ニューセラミックスの生成過程   (a)焼結前期段階(低温焼結)     :焼結前の成形体と変化なし   (b)焼結中期段階(中温焼結)     :粉末粒子どうしの界面拡散反応が進行し、気孔減少に伴う収縮の発生[:L→L’] L” (c) 図1 セラミックス焼結体の緻密化機構  ※さらに焼結が進行し(c)「焼結後期段  階(高温焼結)」になると粒子間の  気孔が消滅し、1つの球状粒子に成長する   [:直径L”の球体(L’→L”(L’>L”))]

ニュ-セラミックスの製造法 ニュ-セラミックスの製造法[:図3.1参照] (1)一般的製造法  ニュ-セラミックスの製造法[:図3.1参照]   (1)一般的製造法      ・・・多結晶・焼結法(:原料調整→成形→焼結:通常の工程)   (2)特殊製造法      ①繊維製造法:複合材料へ利用(FRP、FRM)      ②単結晶製造法[:図3.2,図3.3参照]      ③結晶化ガラス製造法,④非晶質体製造法      ⑤薄膜製造法,⑥表面コ-ティング法 ガラス、すなわち アモルファスを利用 →ナノテク、 ナノマテリアルへ移行 薄膜プロセス

図3.1 ニュ-セラミックスの製造法

※単結晶製造法[CZ法:チョクラルスキ-(Czochralski)法]  単結晶の種子結晶を高周波溶解や抵抗加熱法によって加熱・溶融し、  下部に設置された溶融体と接触し、上部に引上げ種子結晶と同じ方位   を有する単結晶を成長させる  ・・・半導体Si製造用装置(8インチ・ウエハ-作製用) 図3.3 CZ法で作製したBi12SiO20単結晶  図3.2 単結晶製造装置(チョクラルスキ-法)

物質創製・科学研究 現状の材料のプロセスと既存核生成機構 ○ 材料(物質)の製造(現状の材料プロセス) (ex. 金属合金,半導体,無機,有機(含 医薬品及び                           タンパク質結晶)材料) 結晶成長(Crystal Growth) 気相プロセス(ex. 半導体,薄膜材料など) 液相プロセス(ex. 単結晶材料のMelt Growth) 固相プロセス(ex. メカニカルアロイング,粉末焼結)

核生成(Nucleation) ※ 全ての材料の結晶成長の前駆段階としての                    統一的現象および理論 (固相法の場合は,界面 growth 、界面成長が支配) 既存・核生成理論(核生成機構) 1. 均一核生成(Homogeneous Necleation) ・・・理想状態下で生じる本来の核生成現象 2. 不均一核生成(Heterogeneous Necleation) ・・・通常の材料製造・作製時における核生成現象  (ex. 基板上への薄膜作製,液相からの結晶作製(←溶融・凝固) ※ 核生成理論の推移 1926年:Volmer, Weber (Z. Phys. Chem, 119 (1926) 277. 1950年:D. Turnbull (J. Chem. Phys., 18 (1950)198.

ΔG(T, r) : 核生成に伴う系の自由エネルギー変化 r : 核の半径 σLS : 固-液間における界面エネルギー 既存核生成理論 核生成に対する駆動力 表面自由エネルギー項 体積自由エネルギー項 均一核生成  ・・・ 不均一核生成・・・ ΔG(T, r) : 核生成に伴う系の自由エネルギー変化    r : 核の半径 σLS : 固-液間における界面エネルギー   ΔGv : 温度 T における単位面積当たりの固-液間における 自由エネルギーの差    θ : 異種固相上に形成された凝固相(結晶化する液相) のなす角・・・異種固相(不均一核生成サイト)と液相 (核生成する凝固相)との接触角(濡れ角)

θ: 異種固相上に形成された凝固相(これから結晶化する液相)のなす角 ・・・異種固相(不均一核生成サイト)と液相(核生成する凝固相)との接触角(濡れ角) 異種固相に対してθ≒ 180°ならば,均一核生成として扱える.

既存「核生成理論」(Nucleation Theory) 均一核生成,不均一核生成ともに; 安定(平衡)結晶の成長のみを仮定した統一的理論 21世紀の材料科学(物質科学:Materials Science) における新たな展開 従来の安定平衡物質(製造,材料物性)の延長でよいか? 既存概念にない新たな構造と物性を発現する.           ⇒ 新物質創製(≡非平衡相,非平衡物質)の探索 既存核生成理論に変わる      新たな『非平衡相の核生成理論』構築の必要性