点素パス問題に対するアルゴリズム 小林 佑輔 東京大学 大学院情報理工学系研究科 組合せ最適化セミナー 2012 年 7月 13日

Slides:



Advertisements
Similar presentations
ベイズの定理と ベイズ統計学 東京工業大学大学院 社会理工学研究科 前川眞一. 2 Coffe or Tea 珈琲と紅茶のどちらが好きかと聞いた場合、 Star Trek のファンの 60% が紅茶を好む。 Star Wars のファンの 95% が珈琲を好む。 ある人が紅茶を好むと分かったとき、その人が.
Advertisements

だい六か – クリスマスとお正月 ぶんぽう. て form review ► Group 1 Verbs ► Have two or more ひらがな in the verb stem AND ► The final sound of the verb stem is from the い row.
て -form - Making て -form from ます -form -. With て -form, You can say... ~てもいいですか? (= May I do…) ~てください。 (= Please do…) ~ています。 (= am/is/are doing…) Connecting.
Essay writing rules for Japanese!!. * First ・ There are two directions you can write. ・よこがき / 横書き (same as we write English) ・たてがき / 縦書き (from right to.
VE 01 え form What is え form? え? You can do that many things with え form?
Qianping Gu (Simon Fraser大)
英語勉強会.
Chapter 11 Queues 行列.
Recognise, ask about and talk about purpose
3月6日(金曜日) 漢字 #6-10 Verbs! (continued) Particles Time References
AP/5 2013年2月7日.
Chris Burgess (1号館1308研究室、内線164)
Approximation of k-Set Cover by Semi-Local Optimization
What did you do, mate? Plain-Past
日本人の英語文章の中で「ENJOY」はどういうふうに使われているのか
Noun の 間(に) + Adjective Verb てform + いる間(に) during/while.
Agent&Society.
Model Checking (2) Temporal Logic
How do you talk about Positions/ Locations?
点素パス問題に対するアルゴリズム 小林 佑輔 東京大学 大学院情報理工学系研究科 組合せ最適化セミナー 2012 年 7月 13日
Chapter 6 Jade 翡翠(ヒスイ).
V 03 I do NOT eat sushi. I do NOT do sumo.
十年生の 日本語 Year 10 Writing Portfolio
Licensing information
Chapter 4 Quiz #2 Verbs Particles を、に、で
Did he/she just say that? Get your head out of the gutter! Oh wait….
“You Should Go To Kyoto”
What is the English Lounge?
ロジスティクス工学 第7章 配送計画モデル 東京商船大学 久保 幹雄
シャノンのスイッチングゲームにおけるペアリング戦略について
て みる.
Session 8: How can you present your research?
ネットワーク上での社会的効用と個人的効用の対立問題に対するアルゴリズム的研究
suppose to be expected to be should be
Traits 形質.
Model Checking (2) Temporal Logic
My Favorite Movie I will introduce my favorite movie.
Volleyball club ZAURUS
Where is Wumpus Propositional logic (cont…) Reasoning where is wumpus
豊田正史(Masashi Toyoda) 福地健太郎(Kentarou Fukuchi)
大規模なこと Large scale.
My Dance Circle December 13, 2018  表紙 my dance circle.
計算量理論輪講 chap5-3 M1 高井唯史.
クイズやゲーム形式で紹介した実例です。いずれも過去のインターン作です。
2019年4月8日星期一 I. EPL 84, (2008) 2019年4月8日星期一.
最小節点ランキング全域木問題について 豊橋技術科学大学知識情報工学系 増山繁 科研費特定領域研究「新世代の計算限界ーその解明と打破ー」
22 物理パラメータに陽に依存する補償器を用いた低剛性二慣性系の速度制御実験 高山誠 指導教員 小林泰秀
2019/4/22 Warm-up ※Warm-up 1~3には、小学校外国語活動「アルファベットを探そう」(H26年度、神埼小学校におけるSTの授業実践)で、5年生が撮影した写真を使用しています(授業者より使用許諾済)。
Genetic Statistics Lectures (4) Evaluation of a region with SNPs
第69回 創薬科学セミナー 名古屋大学 大学院 創薬科学研究科 主催 講演タイトル: 講師: Dr. Scott D. Smid Ph.D.
北大MMCセミナー 第97回 附属社会創造数学センター主催 Date: 2019年3月5日(火) 11:00~12:00
北大MMCセミナー 第62回 附属社会創造数学センター主催 Date: 2016年11月4日(金) 16:30~18:00
ー生命倫理の授業を通して生徒の意識に何が生じたかー
Selfish Routing 4章前半 岡本 和也.
Created by L. Whittingham
東北大 情報科学 田中和之,吉池紀子 山口大 工 庄野逸 理化学研究所 岡田真人
英語音声学(7) 音連結.
北大MMCセミナー 第16回 Date:2013年11月8日(金)16:30~18:00
Max Cut and the Smallest Eigenvalue 論文紹介
The Facilitative Cues in Learning Complex Recursive Structures
A02 計算理論的設計による知識抽出モデルに関する研究
発表者: 稲葉 一浩 複雑ネットワーク・地図グラフ セミナー 2017/1/19
Acknowledged Broadcasting and Gossiping in ad hoc radio networks
離散数学 11. その他のアルゴリズム 五島.
Apply sound transmission to soundproofing
ガウシアングラフィカルモデルにおける一般化された確率伝搬法
点素パス問題に対するアルゴリズム 小林 佑輔 東京大学 大学院情報理工学系研究科 組合せ最適化セミナー 2012 年 7月 13日
アノテーションガイドラインの管理を行う アノテーションシステムの提案
北大MMCセミナー 第28回 Date: 2014年10月3日(金)14:30~16:00 ※通常と開始時間が異なります
グラフの帯域幅連続多重彩色 を求めるアルゴリズム (Bandwidth Consective Multicolorings of Graphs) 西関研究室 西川和秀.
Presentation transcript:

点素パス問題に対するアルゴリズム 小林 佑輔 東京大学 大学院情報理工学系研究科 組合せ最適化セミナー 2012 年 7月 13日 Thank you. Today I’d like to talk about “an extension of the disjoint paths problem” 小林 佑輔 東京大学 大学院情報理工学系研究科 組合せ最適化セミナー 2012 年 7月 13日

近年の発展 最大点素(辺素)パス問題 Thank you. Today I’d like to talk about “an extension of the disjoint paths problem”

講演内容 イントロダクション 効率的に解けるケース 最短点素パス問題 演習 近年の発展(最大点素パス問題) 2点素パス問題 k点素パス問題 (Robertson-Seymour のアルゴリズム) その他の結果 最短点素パス問題 演習 近年の発展(最大点素パス問題)

辺素パス問題 Input: 頂点対 (s1, t1),…, (sk, tk) Find: 辺素なパス P1,…, Pk (Pi : si → ti ) 辺素パス問題の計算量 (既存の結果) 無向グラフ 有向グラフ k : 定数 多項式時間 NP-困難 OPEN (平面グラフ) k : 変数 (Robertson-Seymour) The disjoint paths problem, denoted DPP in this talk, is a classic and important problem in algorithmic graph theory, which is defined as follows. Suppose that we are given a graph and a collection of vertex pairs (s1, t1), …, (sk, tk). The problem is to find k vertex disjoint paths P1, …, Pk such that Pi is a path from si to ti for each i. For example, in this digraph, these two paths are a solution of the disjoint paths problem, the red path is from s1 to t1, the blue path is from s2 to t2, and they do not share any vertices. We can also consider the disjoint paths problem in an undirected graph. For example, in this graph, these two paths are a solution of the disjoint paths problem. Besides the theoretical interest of the problem, its importance arises from its practical applications, for example in VLSI-design. The disjoint paths problem has a number of variants, for example, the given graph is directed or undirected, the number of pairs k is a fixed constant or a part of the input, and the graph is planar and so on. 点素だと P

最大辺素パス問題 Input: 頂点対 (s1, t1),…, (sk, tk) Maximize: ♯{Pi | 互いに辺素なパス} (Pi : si → ti ) s1 t1 =t4 s2 t3 s3 t2 s4 The disjoint paths problem, denoted DPP in this talk, is a classic and important problem in algorithmic graph theory, which is defined as follows. Suppose that we are given a graph and a collection of vertex pairs (s1, t1), …, (sk, tk). The problem is to find k vertex disjoint paths P1, …, Pk such that Pi is a path from si to ti for each i. For example, in this digraph, these two paths are a solution of the disjoint paths problem, the red path is from s1 to t1, the blue path is from s2 to t2, and they do not share any vertices. We can also consider the disjoint paths problem in an undirected graph. For example, in this graph, these two paths are a solution of the disjoint paths problem. Besides the theoretical interest of the problem, its importance arises from its practical applications, for example in VLSI-design. The disjoint paths problem has a number of variants, for example, the given graph is directed or undirected, the number of pairs k is a fixed constant or a part of the input, and the graph is planar and so on.

最大辺素パス問題 Input: 頂点対 (s1, t1),…, (sk, tk) Maximize: ♯{Pi | 互いに辺素なパス} (Pi : si → ti ) s1 t1 =t4 s2 t3 s3 t2 s4 様々な種類の問題 無向グラフ or 有向グラフ k が 入力の一部 or 定数 辺素パス or 点素パス 混雑度(congestion) c を許す The disjoint paths problem, denoted DPP in this talk, is a classic and important problem in algorithmic graph theory, which is defined as follows. Suppose that we are given a graph and a collection of vertex pairs (s1, t1), …, (sk, tk). The problem is to find k vertex disjoint paths P1, …, Pk such that Pi is a path from si to ti for each i. For example, in this digraph, these two paths are a solution of the disjoint paths problem, the red path is from s1 to t1, the blue path is from s2 to t2, and they do not share any vertices. We can also consider the disjoint paths problem in an undirected graph. For example, in this graph, these two paths are a solution of the disjoint paths problem. Besides the theoretical interest of the problem, its importance arises from its practical applications, for example in VLSI-design. The disjoint paths problem has a number of variants, for example, the given graph is directed or undirected, the number of pairs k is a fixed constant or a part of the input, and the graph is planar and so on. 決定問題に帰着 各辺を通るパスは高々 c 本

点素(辺素)問題関連の論文(1) A Polylogarithmic Approximation Algorithm for Edge-Disjoint Paths with Congestion 2, J. Chuzhoy and S. Li, FOCS 2012. Routing in Undirected Graphs with Constant Congestion, J. Chuzhoy, STOC 2012. Approximation Algorithms and Hardness of Integral Concurrent Flow, P. Chalermsook, J. Chuzhoy, A. Ene, S. Li, STOC 2012. Maximum Edge-Disjoint Paths in Planar Graphs with Congestion 2, L. Seguin-Charbonneau and F. B. Shepherd, FOCS 2011. Breaking O(n^{1/2})-approximation algorithms for the edge-disjoint paths problem, K. Kawarabayashi and Y. Kobayashi, STOC 2011. Shortest non-crossing walks in the plane, J. Erickson, A. Nayyeri, SODA 2011.

点素(辺素)問題関連の論文(2) Approximation Algorithms for the Edge-Disjoint Paths Problem via Raecke Decompositions, M. Andrews, FOCS 2010. Flow-Cut Gaps for Integer and Fractional Multiflows, C. Chekuri, F. B. Shepherd, Weibel, SODA 2010. The Edge Disjoint Paths Problem in Eulerian Graphs and 4-edge-connected Graphs, K. Kawarabayashi and Y. Kobayashi, SODA 2010. A Nearly Linear Time Algorithm for the Half Integral Parity Disjoint Paths Packing Problem, K. Kawarabayashi, B. Reed, SODA 2009. Finding disjoint paths in expanders deterministically and online, N. Alon and M. Capalbo, FOCS 2008. A Nearly Linear Time Algorithm for the Half Integral Disjoint Paths, K. Kawarabayashi, B. Reed, SODA 2008.

論文を読む前に(読むために) 既存研究のまとめ 最大辺素パス問題の難しさ 近似アルゴリズムの基本方針 なぜ congestion? 今後の展開

最大辺素パス問題 Input: 頂点対 (s1, t1),…, (sk, tk) Maximize: ♯{Pi | 互いに辺素なパス} (Pi : si → ti ) 既存研究 O(log1/2-ε n)-近似不可能 [一般グラフ] O(log1/(c+1)-ε n)-近似不可能 [混雑度=c] (Andrews et al. 2005) The disjoint paths problem, denoted DPP in this talk, is a classic and important problem in algorithmic graph theory, which is defined as follows. Suppose that we are given a graph and a collection of vertex pairs (s1, t1), …, (sk, tk). The problem is to find k vertex disjoint paths P1, …, Pk such that Pi is a path from si to ti for each i. For example, in this digraph, these two paths are a solution of the disjoint paths problem, the red path is from s1 to t1, the blue path is from s2 to t2, and they do not share any vertices. We can also consider the disjoint paths problem in an undirected graph. For example, in this graph, these two paths are a solution of the disjoint paths problem. Besides the theoretical interest of the problem, its importance arises from its practical applications, for example in VLSI-design. The disjoint paths problem has a number of variants, for example, the given graph is directed or undirected, the number of pairs k is a fixed constant or a part of the input, and the graph is planar and so on. n : 頂点数 r -近似アルゴリズム: OPT / r 本のパスを出力 最適値

最大辺素パス問題 Input: 頂点対 (s1, t1),…, (sk, tk) Maximize: ♯{Pi | 互いに辺素なパス} (Pi : si → ti ) 既存研究 O(log1/2-ε n)-近似不可能 [一般グラフ] O(log1/(c+1)-ε n)-近似不可能 [混雑度=c] O(n1/2)-近似アルゴリズム [一般グラフ] O(n1/c)-近似アルゴリズム [混雑度=c] (poly log(n))-近似アルゴリズム [連結度:高] (Andrews et al. 2005) (Chekuri et al. 2006) (Srinviasan 1997) The disjoint paths problem, denoted DPP in this talk, is a classic and important problem in algorithmic graph theory, which is defined as follows. Suppose that we are given a graph and a collection of vertex pairs (s1, t1), …, (sk, tk). The problem is to find k vertex disjoint paths P1, …, Pk such that Pi is a path from si to ti for each i. For example, in this digraph, these two paths are a solution of the disjoint paths problem, the red path is from s1 to t1, the blue path is from s2 to t2, and they do not share any vertices. We can also consider the disjoint paths problem in an undirected graph. For example, in this graph, these two paths are a solution of the disjoint paths problem. Besides the theoretical interest of the problem, its importance arises from its practical applications, for example in VLSI-design. The disjoint paths problem has a number of variants, for example, the given graph is directed or undirected, the number of pairs k is a fixed constant or a part of the input, and the graph is planar and so on. (Rao-Zhou 2009) (乱択) n : 頂点数 r -近似アルゴリズム: OPT / r 本のパスを出力 最適値

最大辺素パス問題 Input: 頂点対 (s1, t1),…, (sk, tk) Maximize: ♯{Pi | 互いに辺素なパス} (Pi : si → ti ) 既存研究 O(log1/2-ε n)-近似不可能 [一般グラフ] O(log1/(c+1)-ε n)-近似不可能 [混雑度=c] O(n1/2)-近似アルゴリズム [一般グラフ] O(n1/c)-近似アルゴリズム [混雑度=c] (poly log(n))-近似アルゴリズム [連結度:高] O(n3/7)-近似アルゴリズム [混雑度=2] (Andrews et al. 2005) (Chekuri et al. 2006) (Srinviasan 1997) The disjoint paths problem, denoted DPP in this talk, is a classic and important problem in algorithmic graph theory, which is defined as follows. Suppose that we are given a graph and a collection of vertex pairs (s1, t1), …, (sk, tk). The problem is to find k vertex disjoint paths P1, …, Pk such that Pi is a path from si to ti for each i. For example, in this digraph, these two paths are a solution of the disjoint paths problem, the red path is from s1 to t1, the blue path is from s2 to t2, and they do not share any vertices. We can also consider the disjoint paths problem in an undirected graph. For example, in this graph, these two paths are a solution of the disjoint paths problem. Besides the theoretical interest of the problem, its importance arises from its practical applications, for example in VLSI-design. The disjoint paths problem has a number of variants, for example, the given graph is directed or undirected, the number of pairs k is a fixed constant or a part of the input, and the graph is planar and so on. (Rao-Zhou 2009) (乱択) ~ (乱択) (Kawarabayashi, K. 2011) poly log n を無視 各辺を通るパスは高々 2本

最大辺素パス問題 Input: 頂点対 (s1, t1),…, (sk, tk) Maximize: ♯{Pi | 互いに辺素なパス} (Pi : si → ti ) 既存研究 O(log1/2-ε n)-近似不可能 [一般グラフ] O(log1/(c+1)-ε n)-近似不可能 [混雑度=c] O(n1/2)-近似アルゴリズム [一般グラフ] O(n1/c)-近似アルゴリズム [混雑度=c] (poly log(n))-近似アルゴリズム [連結度:高] O(n3/7)-近似アルゴリズム [混雑度=2] O(poly log(n))-近似アルゴリズム [混雑度=14] (Andrews et al. 2005) (Chekuri et al. 2006) (Srinviasan 1997) The disjoint paths problem, denoted DPP in this talk, is a classic and important problem in algorithmic graph theory, which is defined as follows. Suppose that we are given a graph and a collection of vertex pairs (s1, t1), …, (sk, tk). The problem is to find k vertex disjoint paths P1, …, Pk such that Pi is a path from si to ti for each i. For example, in this digraph, these two paths are a solution of the disjoint paths problem, the red path is from s1 to t1, the blue path is from s2 to t2, and they do not share any vertices. We can also consider the disjoint paths problem in an undirected graph. For example, in this graph, these two paths are a solution of the disjoint paths problem. Besides the theoretical interest of the problem, its importance arises from its practical applications, for example in VLSI-design. The disjoint paths problem has a number of variants, for example, the given graph is directed or undirected, the number of pairs k is a fixed constant or a part of the input, and the graph is planar and so on. (Rao-Zhou 2009) (乱択) ~ (乱択) (Kawarabayashi, K. 2011) (Chuzhoy, 2012) (乱択)

最大辺素パス問題 Input: 頂点対 (s1, t1),…, (sk, tk) Maximize: ♯{Pi | 互いに辺素なパス} (Pi : si → ti ) 既存研究 (平面グラフ) グラフが平面的,オイラー的でも NP-困難 O(log n)-近似アルゴリズム [平面, 混雑度=2] O(1)-近似アルゴリズム [平面, 混雑度=4] O(1)-近似アルゴリズム [平面, 混雑度=2] (Chekuri et al. 2004) (Chekuri et al. 2006) The disjoint paths problem, denoted DPP in this talk, is a classic and important problem in algorithmic graph theory, which is defined as follows. Suppose that we are given a graph and a collection of vertex pairs (s1, t1), …, (sk, tk). The problem is to find k vertex disjoint paths P1, …, Pk such that Pi is a path from si to ti for each i. For example, in this digraph, these two paths are a solution of the disjoint paths problem, the red path is from s1 to t1, the blue path is from s2 to t2, and they do not share any vertices. We can also consider the disjoint paths problem in an undirected graph. For example, in this graph, these two paths are a solution of the disjoint paths problem. Besides the theoretical interest of the problem, its importance arises from its practical applications, for example in VLSI-design. The disjoint paths problem has a number of variants, for example, the given graph is directed or undirected, the number of pairs k is a fixed constant or a part of the input, and the graph is planar and so on. (Seguin-Charbonneau-Shepherd, 2011) n : 頂点数

最大辺素パス問題 Input: 頂点対 (s1, t1),…, (sk, tk) Maximize: ♯{Pi | 互いに辺素なパス} (Pi : si → ti ) 既存研究 (平面グラフ) グラフが平面的,オイラー的でも NP-困難 O(log n)-近似アルゴリズム [平面, 混雑度=2] O(1)-近似アルゴリズム [平面, 混雑度=4] O(1)-近似アルゴリズム [平面, 混雑度=2] O(log2 n)-近似アルゴリズム [平面, オイラー的] O(log n)-近似アルゴリズム [平面, オイラー的] (Chekuri et al. 2004) (Chekuri et al. 2006) The disjoint paths problem, denoted DPP in this talk, is a classic and important problem in algorithmic graph theory, which is defined as follows. Suppose that we are given a graph and a collection of vertex pairs (s1, t1), …, (sk, tk). The problem is to find k vertex disjoint paths P1, …, Pk such that Pi is a path from si to ti for each i. For example, in this digraph, these two paths are a solution of the disjoint paths problem, the red path is from s1 to t1, the blue path is from s2 to t2, and they do not share any vertices. We can also consider the disjoint paths problem in an undirected graph. For example, in this graph, these two paths are a solution of the disjoint paths problem. Besides the theoretical interest of the problem, its importance arises from its practical applications, for example in VLSI-design. The disjoint paths problem has a number of variants, for example, the given graph is directed or undirected, the number of pairs k is a fixed constant or a part of the input, and the graph is planar and so on. (Seguin-Charbonneau-Shepherd, 2011) (Kleinberg 2005) (Kawarabayashi, K. 2010) n : 頂点数

最大辺素パス問題の難しさ Input: 頂点対 (s1, t1),…, (sk, tk) Maximize: ♯{Pi | 互いに辺素なパス} (Pi : si → ti ) 辺素パス問題の難しさ カット条件 幾何的な条件 の両方を同時に扱う必要がある + どの頂点対を結ぶか,を選ぶ難しさ c.f. All-or-nothing flow problem

近似アルゴリズムの基本方針 最適解の上界が必要 (i =1, …, k) 上界 OPT r 倍 出力   si -ti パス全体 上界 OPT   (i =1, …, k) r 倍 P 出力         r -近似アルゴリズム: OPT / r 本のパスを出力 最適値

なぜ congestion? congestion 1 だと近似が難しい 上界 OPT 出力 (i =1, …, k) s1 s2 s3   上界 sk OPT t1 t2 t3 tk   出力   (i =1, …, k) P        

今後の展開(私見) さらなる近似比の改善,脱ランダム化 緩和のない(congestion 1)のケース 新たな上界の構成(違うLP定式化)

まとめ 点素パス問題: カット条件 幾何的な条件 を同時に扱う問題 様々な未解決問題 近年は最大化問題が注目されている