物理システム工学科3年次 物性工学概論 第火曜1限0023教室 第8回 光エレクトロニクスと材料[1] レーザー

Slides:



Advertisements
Similar presentations
レーザーとは 応用プロジェクト I レーザ誘起化学反応の直接追跡 (担当:勝村庸介、工藤久明、石川顕一) 石川顕一.
Advertisements

基礎セミ第7章 (1-4) 偏光のしくみと応用 12T5094E 龍吟. 目次 光の偏光とは? 複屈折とは? 偏光を作り出すもの (偏光プリズム、偏光板、位相板)
プレチャレンジ at 宇都宮高校 日本物理学会 NPO 物理オリンピック日本委 員会 Japan Physics Olympiad J PhO 2014 年 3 月 15 日 プランク定数を測る ( 2005 年第2チャレンジ実験コンテスト 課題)
1 関西大学 サマーキャンパス 2004 関西大学 物理学教室 齊 藤 正 関大への物理 求められる関大生像 高校物理と大学物理 その違いとつながり.
SiC半導体による放射線検出器の開発・研究
半導体デバイス工学 講義資料 第4章 バイポーラデバイス (p.68~p.79).
物理システム工学科3年次 「物性工学概論」 第8回光エレクトロニクス(1) 光電変換:太陽電池、CCDカメラ
物理システム工学科3年次 物性工学概論 第火曜1限0023教室 第4回半導体の色
光通信に挑戦! 光は情報をどのように伝えるのか? 国立沼津工業高等専門学校 教養科 物理教室.
物理システム工学科3年次 物性工学概論 第火曜1限0023教室 第6回 光電変換
物理システム工学科3年次 物性工学概論 第火曜1限0035教室 第6回 光電変換
物理システム工学科3年次 物性工学概論 第火曜1限0031教室 第7回 光電変換
       光の種類 理工学部物理科学科 07232034 平方 章弘.
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
内部導体装置Mini-RT 真空容器内に超伝導コイルを有する。 ポロイダル方向の磁場でプラズマ閉じ込め。 ECHでプラズマを加熱。
第6回 制動放射 東京大学教養学部前期課程 2012年冬学期 宇宙科学II 松原英雄(JAXA宇宙研)
W e l c o m ! いい天気♪ W e l c o m ! 腹減った・・・ 暑い~ 夏だね Hey~!! 暇だ。 急げ~!!
木下基、Manyalibo J. MatthewsA、秋山英文
ファブリ・ペローエタロンを用いた リング型外部共振器付半導体レーザーの 発振周波数制御
物理システム工学科3年次 「物性工学概論」 第5回半導体の色(2) ー半導体の電気的性質ー
電子物性第1 第6回 ー原子の結合と結晶ー 電子物性第1スライド6-1 目次 2 はじめに 3 原子の結合と分子 4 イオン結合
物理システム工学科3年次 物性工学概論 第火曜1限0031教室 第9回: 光エレクトロニクスと材料[2] 光通信と材料
放射線(エックス線、γ線)とは? 高エネルギー加速器研究機構 平山 英夫.
2次元蛍光放射線測定器の開発 宇宙粒子研究室 氏名 美野 翔太.
ー 第1日目 ー 確率過程について 抵抗の熱雑音の測定実験
光の干渉.
物理システム工学科3年次 物性工学概論 第5回光る半導体
前回の内容 結晶工学特論 第5回目 Braggの式とLaue関数 実格子と逆格子 回折(結晶による波の散乱) Ewald球
電子回路Ⅰ 第3回(2008/10/20) バイポーラトランジスタの動作原理.
物理システム工学科3年次 物性工学概論 第1回講義 火曜1限0035教室
金色の石に魅せられて -光で探る新しい 機能性材料- Part2
電界効果トランジスタの動作原理 トランジスタを用いた回路のバイアス
Multi-Pixel Photon Counter(MPPC)の開発
電界効果トランジスタの動作原理 トランジスタを用いた回路のバイアス
物理システム工学科3年次 物性工学概論 第火曜1限0035教室 補講: 光通信と材料
ナノデザイン特論2 レーザーの基礎
量子ビーム基礎 石川顕一 6月 7日 レーザーとは・レーザーの原理 6月21日 レーザー光と物質の相互作用
エレクトロニクスII第2回: ACアダプターを分解しよう ーダイオードと整流回路ー
物理システム工学科3年次 「物性工学概論」 第10回光エレクトロニクス(3) 半導体レーザと光通信
結晶工学特論 第2回目 前回の内容 半導体デバイス LED, LD, HEMT 半導体デバイスと化合物半導体 種類の豊富さ、直接遷移型、
電力 P ( Power ) 単位 ワット W = J / sec
コイルのはたらき コイルの5つのはたらきについて説明.
今後の予定 4日目 10月22日(木) 班編成の確認 講義(2章の続き,3章) 5日目 10月29日(木) 小テスト 4日目までの内容
前回の講義で水素原子からのスペクトルは飛び飛びの「線スペクトル」
研究課題名 研究背景・目的 有機エレクトロニクス材料物質の基礎電子物性の理解 2. 理論 3. 計算方法、プログラムの現状
ナノロッド、マイクロロッド系応用 とりあえず、バイオに限らず 応用例を挙げてみました。
量子力学の復習(水素原子の波動関数) 光の吸収と放出(ラビ振動)
光電効果と光量子仮説  泊口万里子.
物理システム工学科3年次 「物性工学概論」 第1回講義 火曜1限67番教室
Appendix. 【磁性の基礎】 (1)磁性の分類[:表3参照]

半導体の歴史的経緯 1833年 ファラデー AgSの負の抵抗温度係数の発見
電子物性第1 第11回 ー金属の電気的性質ー 電子物性第1スライド11-1 目次 2 はじめに 3 導電率(電子バス) 4 欠陥の多い結晶
ディジタル信号処理 Digital Signal Processing
光スイッチングデバイス.
物理システム工学科3年次 「物性工学概論」 第9回光エレクトロニクス(2) 光通信:光ファイバーとレーザー
レーザについて レーザについて チョット 学習しましょう!.
A4-2 高強度レーザー テーマ:高強度レーザーと物質との相互作用 井上峻介 橋田昌樹 阪部周二 レーザー物質科学分科
物理システム工学科3年次 「物性工学概論」 第4回半導体の色 ー半導体の光学的性質ー
電子回路Ⅰ 第5回(2008/11/10) 理想電源 トランジスタの等価回路.
これらの原稿は、原子物理学の講義を受講している
外部共振器型半導体レーザー装置の製作 物理工学専攻 小菅 洋介 (M1) 〔指導教員: 熊倉 光孝〕
原子核物理学 第6講 原子核の殻構造.
紫外線LEDの特性測定 理工学部 物理学科 宇宙粒子研究室   澤田 晃徳.
「大阪大学レーザーエネルギー学研究センターの共同利用・共同研究拠点化」に向けた要望書・意見書のお願い
生体分子解析学 機器分析 分光学 X線結晶構造解析 質量分析 熱分析 その他機器分析.
第39回応用物理学科セミナー 日時: 12月22日(金) 14:30 – 16:00 場所:葛飾キャンパス研究棟8F第2セミナー室
第2章 電子工学の基礎 2.1 半導体素子 2.2 電子回路 2.3 4端子網.
シンチレーションファイバーを 用いた宇宙線の観測
Presentation transcript:

物理システム工学科3年次 物性工学概論 第火曜1限0023教室 第8回 光エレクトロニクスと材料[1] レーザー 物理システム工学科3年次 物性工学概論 第火曜1限0023教室 第8回 光エレクトロニクスと材料[1] レーザー 大学院ナノ未来科学研究拠点 量子機能工学分野 佐藤勝昭

第6回の復習 光電変換:光を電気に変える 光伝導(photoconductivity) 光起電力効果(photovoltaic effect) フォトダイオード、フォトトランジスタ 太陽電池 実際の応用について学んだ 街灯自動点滅器、太陽光発電、CCDカメラ

第6回の問題(1) 夜になると街灯が自動的に点灯する仕組みを説明せよ。 光を受けて抵抗が低くなるCdS光伝導センサーと固体リレーが接続されており、明るいときにはランプの回路が開くようにしておく。暗くなるとリレーの電流がoffになり、接点が閉じてランプが点灯する。

第6回の問題(2) pn接合が発光ダイオード(光源)にもフォトダイオード(光センサー)にもなる理由 h h 順バイアス h 発光ダイオード pn接合が発光ダイオード(光源)にもフォトダイオード(光センサー)にもなる理由 順方向バイアスにより、電子とホールを接合領域に注入できるので、そこで再結合して発光するのが発光ダイオード(LED)である。 光照射によって接合領域に生成された電子とホールを、逆バイアスによる強い電界で分離して電圧として取り出すのがフォトダイオード(PD)である。 h フォトダイオード 逆バイアス

第8回に学ぶこと 自然放出と誘導放出 レーザーの特徴と原理 さまざまなレーザー レーザーの用途

レーザー 自然放出と誘導放出 さまざまなレーザー レーザー光の特徴 半導体レーザー 半導体レーザーの構造 半導体レーザーの閾値 DFBレーザー LDの製造工程

自然放出と誘導放出 自然放出(spontaneous emission):励起状態から基底状態への緩和によって発光 誘導放出(stimulated emission):光の電界を受けて励起状態から基底状態へ遷移、この逆過程は光吸収。前者が後者より強ければ、正味の誘導放出が起きる。 この現象がlaser=light amplification by stimulated emission of radiationである

レーザーと反転分布 電界を受けて状態1から2に遷移 同じ確率で状態2から1に遷移 2のポピュレーションが1のそれより大きいと正味の誘導放出が起きる。 2 誘導放出 p21 1 1 2 p12 光吸収

正常な分布(Maxwell-Boltzman) Eだけ上にある準位の分布はexp(-E/kT) エネルギー 2 exp(-E/kT) E 1 1 分布関数

レーザー光の特徴 光波の発振器または増幅器 位相がそろっている フォトンのボース凝縮状態:巨視的に現れた量子状態 可干渉(coherent)、 指向性(directivity) 単色性(monochromatic) 高エネルギー密度(high density) 超短光パルス(ultra short pulse) フォトンのボース凝縮状態:巨視的に現れた量子状態

さまざまなレーザー 気体レーザー:例) He-Ne, He-Cd, Ar+, CO2, Excimer: 固体レーザー: 半導体レーザー: 気体の励起状態に反転分布を作る 固体レーザー: 例) YAG:Nd(ヤグ), Al2O3:Ti(チタンサファイア), Al2O3:Cr(ルビー): 固体中の局在中心を光学的に励起、反転分布を作る 半導体レーザー: 例) GaAlAs, InGaN:電子とホールの高密度注入により反転分布を作る。

気体レーザー HeNeレーザ 昭和オプトロニクス http://www.soc-ltd.co.jp/index.html

HeNeレーザーの原理 プラズマ内での自由電子との衝突による励起は、最もエネルギ準位の低い準安定状態に多数のヘリウム原子を取り込む原因となる。ヘリウムの励起状態には、ヘリウムの2 つの電子の一方が最も低エネルギの原子軌道1S から2S 原子軌道に励起される21S と23S の2 つの励起状態がある。このため、この状態を電子励起状態と呼んでいます。これに対して、ネオンは、  1 S0 基底準位に1s2 2s2 2p4 の状態で配列されている10 個の電子を有し、より大きく、より複雑な原子です。ネオン原子は多くの励起状態を持ち、その内のレーザー作用に関係する励起状態が右図にエネルギ準位のダイヤグラムとして示されています。電子的に励起された状態のネオンガスの多様な性質は、互いに他の電子を整列させることができる励起された電子の運動による幾つもの異なった手段からもたらされます。 http://www.mgkk.com/products/pdf/02_4_HeNe/024_213.pdf

いろんな波長のHeNeレーザー 1.523m 赤外 632.8nm 赤 612nm オレンジ色 594nm 黄色 543.5nm グリーン

気体レーザー Arイオンレーザー 青458nm 青488nm 青緑514nm

気体レーザー Arレーザーの用途 レーザーショーなど照明用 PL励起光源

気体レーザー CO2レーザー 10.6m 用途 金属加工 レーザー治療 空気汚染計測

固体レーザー YAGレーザー、YVO4レーザー YAG:Nd 1.06m 微細加工 SHG用光源 http://www.fesys.co.jp/sougou/seihin/fa/laser/fal3000.html LD励起固体レーザー フォトテクニカ社

固体レーザー チタンサファイアレーザー Al2O3:Ti3+ (波長可変) 佐藤研のチタンサファイアレーザー

固体レーザー ルビーレーザー Al2O3:Cr3+ 固体レーザーの一種で、人造ルビーの単結晶をレーザー媒質とするもので、これに強いキセノンランプの光を照射して励起することにより波長694.3nmのパルス状の光が得られます。ルビーの単結晶は多少の不均一性があるためピンホールを入れて発振位置を調整します。また不規則な何本もの発振線があるためエタロン板を入れて使用します。これによりコヒーレンス長は数mになります。 ルビーレーザー ルビーロッド

半導体レーザー(LD (laser diode)) LED構造において、劈開面を用いたキャビティ構造を用いるとともに、ダブルヘテロ構造により、光とキャリアを活性層に閉じ込め、反転分布を作る。 DFB構造をとることで特定の波長のみを選択している。

半導体レーザーの構造 http://www.labs.fujitsu.com/gijutsu/laser/kouzo.html

半導体レーザーの材料 光通信帯用:1.5μm;GaInAsSb, InGaAsP CD用:780nm GaAs DVD用:650nm GaAlAs MQW DVR用:405nm InGaN

ダブルヘテロ構造 活性層(GaAs)をバンドギャップの広い材料でサンドイッチ:ダブルヘテロ(DH)構造 http://www.ece.concordia.ca/~i_statei/vlsi-opt/

DHレーザー 光とキャリアの閉じこめ バンドギャップの小さな半導体をバンドギャップの大きな半導体でサンドイッチ:高い濃度の電子・ホールの活性層に閉じこめ 屈折率の高い半導体(バンドギャップ小)を屈折率の低い半導体(バンドギャップ大)でサンドイッチ:全反射による光の閉じこめ

DFBレーザー 1波長の光しかでないレーザ。つまり、通信時に信号の波がずれることがないので、高速・遠距離通信が可能。 (通信速度:Gb/s = 1秒間に10億回の光を点滅する。電話を1度に約2万本通話させることができます) http://www.labs.fujitsu.com/gijutsu/laser/kouzo.html

レーザーの用途 光ファイバー通信 光ストレージ レーザープリンター ディスプレイ 材料加工 治療

光ファイバー通信システム 光ファイバー通信はどのように行われているか調べてみよう。

光ストレージ CD、DVD、DVR MD、MO

レーザープリンター http://web.canon.jp/technology/detail/lbp/laserbeam_system/

レーザーディスプレイ ポリゴンミラー

レーザー加工 富士通システムのHPより

レーザー治療 主としてCO2レーザー

問題 Laserは何の頭文字をとったもので意味は何か Laserのさまざまな応用はレーザーのどのような特徴を利用しているか