大学院物理システム工学専攻2004年度 固体材料物性第2回

Slides:



Advertisements
Similar presentations
大学院物理システム工学専攻 2004 年度 固体材料物性第 8 回 -光と磁気の現象論 (3) - 佐藤勝昭ナノ未来科学研究拠点.
Advertisements

無機化学 I 後期 木曜日 2 限目 10 時半〜 12 時 化学専攻 固体物性化学分科 北川 宏 301 号室.
材料系物理工学 第1回 磁気に親しもう 量子機能工学 佐藤勝昭. 第1部 磁性 第1回 ( 月 ) 磁気に親しもう – 磁石、 HDD 、 MD 、モーター、磁場、磁束密度、磁化、磁気 モーメントとは何か、磁化曲線、反磁界、ヒステリシス、軟 質磁性体、硬質磁性体.
物理システム工学科3年次 物性工学概論 第火曜1限0031教室 第13回 スピンエレクトロニクスと材料[2] 磁性の起源・磁気記録
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛
材料系物理工学 第2回 磁石を微細にしていくと?
電磁気学C Electromagnetics C 7/27講義分 点電荷による電磁波の放射 山田 博仁.
・力のモーメント ・角運動量 ・力のモーメントと角運動量の関係
大学院物理システム工学専攻2004年度 固体材料物性第3回
物理化学(メニュー) 0-1. 有効数字 0-2. 物理量と単位 0-3. 原子と原子量 0-4. 元素の周期表 0-5.
講師:佐藤勝昭 (東京農工大学工学部教授)
電子物性第1 第5回 ー 原子の軌道 ー 電子物性第1スライド5-1 目次 2 はじめに 3 場所の関数φ 4 波動方程式の意味
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
第2回応用物理学科セミナー 日時: 6月 2日(月) 16:00 – 17:00 場所:葛飾キャンパス研究棟8F第2セミナー室
第6回:電流と磁場(2) ・電流が磁場から受ける力 ・磁場中の荷電粒子が受ける力とその運動 今日の目標
磁性工学 第2回 磁石を微細にしていくと? 佐藤勝昭.
小笠原智博A*、宮永崇史A、岡崎禎子A、 匂坂康男A、永松伸一B、藤川高志B 弘前大学理工学部A 千葉大大学院自然B
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛
前回の内容 結晶工学特論 第4回目 格子欠陥 ミラー指数 3次元成長 積層欠陥 転位(刃状転位、らせん転位、バーガーズベクトル)
電界(電場)は 1C に 働く力.
電磁気学C Electromagnetics C 7/13講義分 電磁波の電気双極子放射 山田 博仁.
磁歪式振動発電の 高出力化と発電床への応用
物理システム工学科3年次 物性工学概論 第火曜1限0023教室 第12回 スピンエレクトロニクスと材料[2] 磁性の基礎
Ⅰ 孤立イオンの磁気的性質 1.電子の磁気モーメント 2.イオン(原子)の磁気モーメント 反磁性磁化率、Hund結合、スピン・軌道相互作用
Ⅲ 結晶中の磁性イオン 1.結晶場によるエネルギー準位の分裂 2.スピン・ハミルトニアン
動力学(Dynamics) 運動方程式のまとめ 2008.6.17
Ⅳ 交換相互作用 1.モット絶縁体、ハバード・モデル 2.交換相互作用 3.共有結合性(covalency)
原子核物理学 第4講 原子核の液滴模型.
物理学セミナー 2004 May20 林田 清 ・ 常深 博.
材料系物理工学 第3回 鉄はなぜ磁気をおびる?
原子核物理学 第8講 核力.
黒体輻射とプランクの輻射式 1. プランクの輻射式  2. エネルギー量子 プランクの定数(作用量子)h 3. 光量子 4. 固体の比熱.
前期量子論 1.電子の理解 電子の電荷、比電荷の測定 2.原子模型 長岡モデルとラザフォードの実験 3.ボーアの理論 量子化条件と対応原理
物理システム工学科3年次 物性工学概論 第火曜1限0035教室 第12回 スピンエレクトロニクスと材料[2]磁性の起源・磁気記録
磁性工学特論 第1回 磁気に親しもう 非常勤講師 佐藤勝昭(東京農工大学).
HERMES実験における偏極水素気体標的の制御
大学院物理システム工学専攻2004年度 固体材料物性第7回 -光と磁気の現象論(2)-
電磁気学C Electromagnetics C 5/28講義分 電磁波の反射と透過 山田 博仁.
古典論 マクロな世界 Newtonの運動方程式 量子論 ミクロな世界 極低温 Schrodinger方程式 ..
Ⅴ 古典スピン系の秩序状態と分子場理論 1.古典スピン系の秩序状態 2.ハイゼンベルグ・モデルの分子場理論 3.異方的交換相互作用.
電磁気学Ⅱ Electromagnetics Ⅱ 6/30講義分 電磁波の反射と透過 山田 博仁.
前回の講義で水素原子からのスペクトルは飛び飛びの「線スペクトル」
電磁気学C Electromagnetics C 7/17講義分 点電荷による電磁波の放射 山田 博仁.
原子核物理学 第2講 原子核の電荷密度分布.
量子力学の復習(水素原子の波動関数) 光の吸収と放出(ラビ振動)
物理システム工学科3年次 「物性工学概論」 第1回講義 火曜1限67番教室
Appendix. 【磁性の基礎】 (1)磁性の分類[:表3参照]
動力学(Dynamics) 力と運動方程式 2008.6.10
電子物性第1 第9回 ー粒子の統計ー 電子物性第1スライド9-1 目次 2 はじめに 3 圧力 4 温度はエネルギー 5 分子の速度
2.4 Continuum transitions Inelastic processes
電磁気学Ⅱ Electromagnetics Ⅱ 6/9講義分 電磁場の波動方程式 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 8/11講義分 点電荷による電磁波の放射 山田 博仁.
学年   名列    名前 物理化学 第1章5 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
電磁気学Ⅱ Electromagnetics Ⅱ 5/29講義分 電磁場の運動量 山田 博仁.
大学院理工学研究科 2004年度 物性物理学特論第5回 -磁気光学効果の電子論(1):古典電子論-
第6回講義 前回の復習 ☆三次元井戸型ポテンシャル c a b 直交座標→極座標 運動エネルギーの演算子.
これらの原稿は、原子物理学の講義を受講している
学年   名列    名前 物理化学 第1章5 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
α decay of nucleus and Gamow penetration factor ~原子核のα崩壊とGamowの透過因子~
原子核物理学 第7講 殻模型.
誘導起電力は 巻数と 磁束の時間変化 に比例する.
2・1・2水素のスペクトル線 ボーアの振動数条件の導入 ライマン系列、バルマー系列、パッシェン系列.
原子核物理学 第6講 原子核の殻構造.
工学系大学院単位互換e-ラーニング科目 磁気光学入門第7回 -磁気光学効果の電子論(2):量子論-
化学1 第11回講義 ・吸光度、ランベルト-ベールの法則 ・振動スペクトル ・核磁気共鳴スペクトル.
講師:佐藤勝昭 (東京農工大学大学院教授)
第39回応用物理学科セミナー 日時: 12月22日(金) 14:30 – 16:00 場所:葛飾キャンパス研究棟8F第2セミナー室
電磁気学Ⅱ Electromagnetics Ⅱ 6/7講義分 電磁波の反射と透過 山田 博仁.
60Co線源を用いたγ線分光 ―角相関と偏光の測定―
Presentation transcript:

大学院物理システム工学専攻2004年度 固体材料物性第2回 佐藤勝昭 ナノ未来科学研究拠点

第2回講義で学ぶこと 磁性体の磁化、磁化率について学ぶ 磁性体の分類を学ぶ 磁性体の交換相互作用を学ぶ

磁化 磁性体に磁界を加えたとき、その表面には磁極が生じる。 この磁性体は一時的に磁石のようになるが、そのとき磁性体が磁化されたという。 (a) (b) (高梨:初等磁気工学講座)より

磁化の定義 ミクロの磁気モーメントの単位体積あたりの総和を磁化という。 K番目の原子の1原子あたりの磁気モーメントをkとするとき、磁化Mは式M= kで定義される。 磁気モーメントの単位はWbmであるから磁化の単位はWb/m2となる。 (高梨:初等磁気工学講座)より

磁化曲線 磁性体を磁界中に置き、磁界を増加していくと、磁性体の磁化は増加していき、次第に飽和する。 磁化曲線は磁力計を使って測定する。 VSM:試料振動型磁力計 試料を0.1~0.2mm程度のわずかな振幅で80Hz程度の低周波で振動させ、試料の磁化による磁束の時間変化を、電磁石の磁極付近に置かれたサーチコイルに誘起された誘導起電力として検出する。誘導起電力は試料の磁化に比例するので、磁化を測定することができる。 スピーカーと同じ振動機構 磁極付近に置いたサーチコイル 電磁石

VSMブロック図 丸善実験物理学講座「磁気測定I」 p.68より

ソフト磁性 パーマロイ*に磁界を加えると磁化は急に増大しわずか40[A/m](地磁気程度)の磁界で飽和する。 磁化しやすく、磁界の変化によく追従する磁性をソフト(軟らかい)磁性とよび、このような磁性体を軟質磁性体と称する。 Hc=10A/m=0.126Oe 中野パーマロイのHP http://www.nakano-permalloy.co.jp/j_permalloy_pb.htmlより *permalloy(パーマロイ)とは、Ni:Fe=80:20程度のNi-Fe合金

セミハード磁性 物理システム工学実験「磁性」で作製しているY2BiFe4GaO12の磁化曲線は、膜面に垂直な磁界に対し明瞭なヒステリシスを示す。 1つの向きに強い磁界を加えていったん飽和磁化Msに達した後、磁界を取り去っても、残留磁化Mrが残る。 磁化を反転させるには、保磁力Hcより大きな磁界を加えなければならない。 Ms Mr Hc Hc=200 Oe =15.9 kA/m Y2Bi1Fe4Ga1O12 ガラス基板 650℃焼成 塗布回数10回 測定: 佐藤研M1水澤

ハード磁性:Co66Cr17Pt17 次世代ハードディスクは垂直磁気記録になるといわれている。 Kerr回転 VSM 佐藤研 寺山(OB)、細羽(OB)、清水(M2)が測定

究極の磁石:原子磁気モーメント さらにどんどん分割して 原子のレベルに達しても 磁極はペアで現れる S          N r 磁気モーメント m=qr [Wbm] -q [Wb] +q [Wb] さらにどんどん分割して 原子のレベルに達しても 磁極はペアで現れる この究極のペアにおける 磁極の大きさと間隔の積を磁気モーメントとよぶ 原子においては、電子の軌道運動による電流と電子のスピンよって磁気モーメントが生じる。 -e  r 原子磁石

磁気モーメント 一様な磁界H中の磁気モーメントに働くトルクTは T=qH r sin=mH sin 磁気モーメントのもつポテンシャルEは S          N r 磁気モーメント m=qr [Wbm] -q [Wb] +q [Wb] qH rsin  -qH 一様な磁界H中の磁気モーメントに働くトルクTは T=qH r sin=mH sin 磁気モーメントのもつポテンシャルEは   E=Td=  mH sin d=1-mHcos E=-mH 単位:E[J]=-m[Wbm]  H[A/m]; (高梨:初等磁気工学講座)より

環状電流と磁気モーメント 電子の周回運動→環状電流 -e[C]の電荷が半径a[m]の円周上を線速度v[m/s]で周回 →1周の時間は2a/v[s]  →電流はi=-ev/2πa[A]。 磁気モーメントは、電流値iに円の面積 S= a2をかけることにより求められ、 =iS=-eav/2となる。 一方、角運動量は=mav であるから、これを使うと磁気モーメントは =-(e/2m)  となる。 -e  r N S

軌道角運動量の量子的扱い 量子論によると角運動量は を単位とするとびとびの値をとり、電子軌道の角運動量はl=Lである。Lは整数値をとる =-(e/2m) に代入すると -e  軌道磁気モーメントl=-(e/2m)L=- BL ボーア磁子 B=e/2m =9.2710-24[J/T] 単位:[J/T]=[Wb2/m]/[Wb/m2]=[Wbm]

もう一つの角運動量:スピン 電子スピン量子数sの大きさは1/2 量子化軸方向の成分szは±1/2の2値をとる。 スピン磁気モーメントはs=-(e/m)sと表される。 従って、s=-(e/m)s=- 2Bs 実際には上式の係数は、2より少し大きな値g(自由電子の場合g=2.0023)をもつので、 s=- gBsと表される。

スピンとは? ディラックの相対論的電磁気学から必然的に導かれる。 スピンはどのように導入されたか 電子スピン、核スピン Na(ナトリウム)のD線のゼーマン効果(磁界をかけるとスペクトル線が2本に分裂する。)を説明するためには、電子があるモーメントを持っていてそれが磁界に対して平行と反平行とでゼーマンエネルギーが異なると考える必要があったため、導入された量子数である。 電子スピン、核スピン

電子の軌道占有の規則 各軌道には最大2個の電子が入ることができる 電子はエネルギーの低い軌道から順番に入る エネルギーが等しい軌道があれば、まず電子は1個ずつ入り、その後、2個目が入っていく n=3 M-shell 3s, 3p, 3d 軌道 最大電子数 2+6+10=18 n=2 L-shell n=1 K-shell 2s, 2p 軌道 最大電子数2+6 1s 軌道 最大電子数2

主量子数と軌道角運動量量子数 主量子数 n 軌道角運動量量子数 l=n-1, .... ,0 n l m 1 1s 2 2s -1 2p 6 縮重度 1 1s 2 2s -1 2p 6 3 3s 3p -2 3d 10

元素の周期表 3d遷移金属

磁性体の分類 磁気秩序を持たない磁性 磁気秩序をもつ磁性 常磁性 反磁性 マクロの自発磁化をもつ系 自発磁化をもたない系 強磁性 フェリ磁性 反強磁性 スパイラル磁性 スピン密度波状態

常磁性 ランジェバン(Langevin)の常磁性 パウリ(Pauli)の常磁性 バンブレック(VanVleck)の常磁性

キュリーの法則 ピエールキュリーは「種々の温度における物体の磁気的性質」(1895)で、多くの金属、無機物、気体の磁性を調べて論じた。 キュリーの法則とは、「物質の磁化率が絶対温度に反比例する」という法則である。(これは「常磁性物質」において磁界が小さい場合に成り立つ) χ=M/H=C/T キュリーの法則=C/Tの例 CuSO4K2SO46H2O (中村伝:磁性より)

ランジェバンの常磁性 (佐藤・越田:応用電子物性工学)

ランジェバンの理論 原子(あるいはイオン)が磁気モーメントをもち、互いに相互作用がないとする。 磁界Hの中に置かれると、そのエネルギーは E=- ・Hで与えられるので、平行になろうとトルクが働くが、これを妨げるのが熱運動kTである。両者のせめぎ合いで原子磁気モーメントの向きが決まる 統計力学によると磁界方向に極軸をとって、θとθ+Δθの間にベクトルを見出す確率は

ランジェバンの理論つづき 従って、磁界方向のの平均値は次式で与えられる。 ここにL(x)はランジェバン関数と呼ばれ、次式で表される

ランジェバン理論により キュリー則を導く x=H/kTが小さいとして、展開の第1項のみをとると、1モルの原子数Nとして M=N・(H/3kT)=(N2/3kT)H が得られる。 これを磁化率の定義式χ=M/Hに代入すると、χ=N2/3kTが得られ、キュリーの式 χ=C/Tが得られた。 ここにキュリー定数はC=N2/3kである。 =neffBとおく。ここにneffはボーア磁子を単位にしたときの原子磁気モーメントの大きさを表し、有効ボーア磁子数と呼ばれる。 C=(NB2/3k) neff2

古典的ランジェバンの式と比較して、有効ボーア磁子数は 右のように得られる。 量子論による ランジェバンの式 外部磁界のもとで、相互作用-・Hによって、MJ=J-1, J-2,…-J+1,-Jの縮退した状態は2J+1個に分裂する。温度Tでこれらの準位にどのように分布するかを考慮して平均の磁気モーメントを計算する。結果を先に書いておくと、磁界が小さいとき、近似的に次式で表される。 古典的ランジェバンの式と比較して、有効ボーア磁子数は 右のように得られる。

フントの規則 原子が基底状態にあるときのL, Sを決める規則 原子内の同一の状態(n, l, ml, msで指定される状態)には1個の電子しか占有できない。(Pauli排他律) 基底状態では、可能な限り大きなSと、可能な限り大きなLを作るように、sとlを配置する。(Hundの規則1) 上の条件が満たされないときは、Sの値を大きくすることを優先する。(Hundの規則2) 基底状態の全角運動量Jは、less than halfではJ=|L-S| 、more than halfではJ=L+Sをとる。

多重項の表現 左肩の数字 2S+1 (スピン多重度) 中心の文字 Lに相当する記号 右下の数字 Jz 読み方singlet, doublet, triplet, quartet, quintet, sextet 中心の文字 Lに相当する記号 L=0, 1, 2, 3, 4, 5, 6に対応してS, P, D, F, G, H, I・・・ 右下の数字 Jz  例:Mn2+(3d5) S=5/2 (2S+1=6), L=0 (→記号:S) 6S5/2

遷移金属イオンの電子配置 3d1 3d2 3d3 3d4 3d5 3d6 3d7 3d8 3d9 3d10 2 -2 -1 1

演習コーナー 3価遷移金属イオンのL,S,Jを求め多重項の表現を記せ 電子配置 L S J 多重項 Ti3+ [Ar]3d1 V3+ [Ar]3d2 Cr3+ [Ar]3d3 Mn3+ [Ar]3d4 Fe3+ [Ar]3d5 Co3+ [Ar]3d6 Ni3+ [Ar]3d7

3d遷移金属イオンの角運動量 3価遷移金属イオンの軌道、スピン、全角運動量 イオン 電子配置 L S J 多重項 Ti3+ [Ar]3d1 2 1/2 3/2 2D3/2 V3+ [Ar]3d2 3 1 3F2 Cr3+ [Ar]3d3 4F3/2 Mn3+ [Ar]3d4 5D0 Fe3+ [Ar]3d5 5/2 6S5/2 Co3+ [Ar]3d6 4 5D4 Ni3+ [Ar]3d7 9/2 4F9/2