計算の理論 II 帰納的関数2 月曜4校時 大月美佳.

Slides:



Advertisements
Similar presentations
北海道大学 Hokkaido University 1 情報理論 講義資料 2016/06/22 情報エレクトロニクス学科共通科目・2年次・第 1 学期〔必修 科目〕 講義「情報理論」第 5 回 第 3 章 情報源のモデル [ 後半 ] 3.5 情報源のエントロピー.
Advertisements

人工知能特論2011 No.4 東京工科大学大学院 担当教員:亀田弘之.
人工知能特論2007 No.4 東京工科大学大学院 担当教員:亀田弘之.
確率と統計 平成23年12月8日 (徐々に統計へ戻ります).
黒澤 馨 (茨城大学) 情報セキュリティ特論(4) 黒澤 馨 (茨城大学) 2017/3/4 confidential.
プログラミング論 I 補間
計算の理論 II 帰納的関数(つづき) 月曜4校時 大月美佳.
計算の理論 I 決定性有限オートマトン(DFA) と 非決定性有限オートマトン(NFA)
計算の理論 II NP完全 月曜4校時 大月美佳.
計算の理論 I ー DFAとNFAの等価性 ー 月曜3校時 大月 美佳.
情報知能学科「アルゴリズムとデータ構造」
計算の理論 II 文脈自由文法と プッシュダウンオートマトン
数理論理学 第1回 茨城大学工学部情報工学科 佐々木 稔.
データ構造と アルゴリズム 知能情報学部 新田直也.
計算の理論 I -講義について+αー 月曜3校時 大月美佳.
数理論理学 第11回 茨城大学工学部情報工学科 佐々木 稔.
チューリング機械 状態の有限集合 ヘッドの方向を表す。 L:1コマ左へ R:1コマ右へ テープ記号の有限集合 入力記号の有限集合 動作関数
形式言語とオートマトン2013 ー有限オートマトンー 第5日目
2. 論理ゲート と ブール代数 五島 正裕.
計算の理論 II NP完全 月曜5校時 大月美佳 平成17年1月17日 佐賀大学理工学部知能情報システム学科.
形式言語の理論 5. 文脈依存言語.
東京工科大学 コンピュータサイエンス学部 亀田弘之
計算の理論 II Turing機械の合成 月曜5校時 大月美佳 2004/11/15 佐賀大学理工学部知能情報システム学科.
計算の理論 I -Myhill-Nerodeの定理 と最小化-
計算の理論 II 帰納的関数 月曜4校時 大月美佳.
計算の理論 I 正則表現 火曜3校時 大月 美佳 平成16年6月8日 佐賀大学知能情報システム学科.
計算の理論 I ー 正則表現(今度こそ) ー 月曜3校時 大月 美佳.
計算の理論 I 正則表現 月曜3校時 大月 美佳 平成15年6月9日 佐賀大学知能情報システム学科.
計算の理論 I ー 正則表現 ー 月曜3校時 大月 美佳.
計算の理論 II Turing機械 月曜4校時 大月美佳.
レポート提出者のリスト 次のURLに掲載 ~goto/infomath.html 学内のIPアドレスからのみ閲覧 ( )
計算の理論 I -Myhill-Nerodeの定理 と最小化-
計算の理論 II 言語とクラス 月曜4校時 大月美佳.
計算の理論 II 時間量と領域量 月曜5校時 大月美佳 2019/4/10 佐賀大学理工学部知能情報システム学科.
計算の理論 II 計算量 月曜5校時 大月美佳 2019/4/10 佐賀大学理工学部知能情報システム学科.
計算の理論 II 前期の復習 -有限オートマトン-
計算の理論 I ε-動作を含むNFA 月曜3校時 大月 美佳.
計算の理論 I ε-動作を含むNFA 月曜3校時 大月 美佳 平成15年6月2日 佐賀大学知能情報システム学科.
計算の理論 I 正則表現とFAとの等価性 月曜3校時 大月 美佳 平成15年6月16日 佐賀大学知能情報システム学科.
数理論理学 第12回 茨城大学工学部情報工学科 佐々木 稔.
計算の理論 I ー閉包性ー 月曜3校時 大月 美佳.
計算の理論 I ー正則表現とFAの等価性 その1ー
計算の理論 I 決定性有限オートマトン(DFA) と 非決定性有限オートマトン(NFA)
計算の理論 I 反復補題 月曜3校時 大月 美佳 平成15年7月14日 佐賀大学知能情報システム学科.
計算の理論 I 非決定性有限オートマトン(NFA)
第14回 前半:ラムダ計算(演習付) 後半:小テスト
計算の理論 I -プッシュダウンオートマトン-
計算の理論 I ー正則表現とFAの等価性ー 月曜3校時 大月 美佳.
人工知能特論II 第8回 二宮 崇.
計算の理論 I プッシュダウンオートマトン 火曜3校時 大月 美佳 平成16年7月6日 佐賀大学知能情報システム学科.
数理論理学 第9回 茨城大学工学部情報工学科 佐々木 稔.
プログラミング言語論 第10回 情報工学科 篠埜 功.
計算の理論 I -数学的概念と記法- 月曜3校時 大月 美佳.
ミニテスト12解答 月曜3校時 大月 美佳.
計算の理論 I -講義について+αー 月曜3校時 大月美佳 平成31年5月18日 佐賀大学理工学部知能情報システム学科.
確率論・数値解析及び演習 (第7章) 補足資料
計算の理論 I NFAとDFAの等価性 火曜3校時 大月 美佳 平成16年5月18日 佐賀大学理工学部知能情報システム学科.
計算の理論 I 反復補題 火曜3校時 大月 美佳 平成16年7月13日 佐賀大学知能情報システム学科.
モデルの微分による非線形モデルの解釈 明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌.
計算の理論 I ー 正則表現 ー 月曜3校時 大月 美佳.
Cプログラミング演習 ニュートン法による方程式の求解.
計算の理論 I ε-動作を含むNFAと等価なDFA
計算の理論 I ε-動作を含むNFA 火曜3校時 大月 美佳 平成16年5月25日 佐賀大学知能情報システム学科.
計算の理論 I -講義について+αー 火曜3校時 大月美佳 平成31年8月23日 佐賀大学理工学部知能情報システム学科.
計算の理論 I ー ε-動作を含むNFA ー 月曜3校時 大月 美佳.
計算の理論 I プッシュダウンオートマトン 月曜3校時 大月 美佳 平成15年7月7日 佐賀大学知能情報システム学科.
計算の理論 II 多テープTuring機械 月曜4校時 大月美佳 平成16年11月29日 佐賀大学知能情報システム学科.
計算の理論 II 時間量と領域量 月曜4校時 大月美佳 2019/9/13 佐賀大学理工学部知能情報システム学科.
数理論理学 最終回 茨城大学工学部情報工学科 佐々木 稔.
計算の理論 I 最小化 月曜3校時 大月 美佳 平成15年6月23日 佐賀大学知能情報システム学科.
Presentation transcript:

計算の理論 II 帰納的関数2 月曜4校時 大月美佳

講義の前に JABEE審査員が見学に来ます 来週はお休みなので、レポートがあります 2019/1/11 佐賀大学理工学部知能情報システム学科

今日の講義内容 原始帰納的関数の復習 原始帰納的集合と述語 初期関数 合成と原始帰納 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的関数 計算可能な関数の一部 原始帰納的関数 ー拡大→帰納的関数=計算できる関数の族 帰納的関数=Turing機械で受理できる言語 帰納的関数=計算可能 原始帰納的関数 2019/1/11 佐賀大学理工学部知能情報システム学科

初期関数 原始帰納的関数の素。 (1) Z(x)=0 S(x)=x+1 Uni(x1, …, xi, …, xn)=xi i番目のxiを取り出す。 これらに操作を加えて原始帰納的関数を作成する。 Z(x) x 1 2 3 4 5 S(x) x 1 2 3 4 5 2019/1/11 佐賀大学理工学部知能情報システム学科

合成と原始帰納 初期関数に加える操作 合成 原始帰納 (primitive recursion) r変数の関数hとr個のn変数関数gi(1≦i≦r)から、 n変数の関数fを以下の操作で作ること。 f(x1, …,xn)=h(g1(x1, …,xn), …,gr(x1, …, xn)) 原始帰納 (primitive recursion) n-1変数の関数gとn+1変数の関数hから、 f(x1, …, xn)=g(x1, …,xn-1) (xn=0のとき) f(x1, …, xn)=h(x1, …, xn-1, xn-1, f(x1, …, xn-1)) (xn>0のとき) 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的関数 (primitive recursive) 定義 初期関数(1), (2), (3)に 操作(I), (II)を 有限回(0回以上)適用して 得られた関数。 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的関数の例 定数関数 Cnk(x1, …, xi, …, xn)=k x1+x2 x1・ x2 xy x1! については前回計算練習までしてみた。 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的関数の例 (9) pd(x1)を pd(x1)=0 (x1=0のとき) pd(x1)= x1-1 (x1>0のとき) とおくと、 pd(x1)=Z(k)=0 (x1=0のとき) pd(x1)=p(x1-1, pd(x1-1))=x1-1 (x1>0のとき) ここで、 p(x, y)= U21(x, y)=x g(k) h(x1-1, f(x1-1)) 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的関数の例 (10) 自然数上での減算x1ーx2を ・ x1ーx2 = x1- x2 (x1≧x2のとき) とする。 x1ーx2 =n-minus(x1, x2)とおくと、 n-minus(x1, x2)= U11(x1) (x2=0のとき) n-minus(x1, x2)=p(x1, x2-1, n-minus(x1, x2-1)) =pd(n-minus(x1, x2 -1)) (x2>0のとき) ここで、 p(x, y, z)= pd(U33(x, y, z))=pd(z) ・ ・ ・ g(x1) h(x1, x2-1, f(x1, x2-1)) 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的関数の例 (11) (11) 差の絶対値| x1-x2 |を | x1-x2 | = x1-x2 (x1≧x2のとき) とする。 | x1-x2 | =abs-minus(x1, x2) =plus(n-minus(x1, x2), n-minus (x2, x1)) = x1ーx2+x2ーx1 ・ ・ 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的関数の例 (12) xの符号を表す関数 sg(x1)=0 (x1=0のとき) sg(x1)=1 (x1>0のとき) とすると、 sg(x1)=Z(k)=0 (x1=0のとき) sg(x1)=S(Z(U21 (x1-1, sd(x1-1))) (x1>0のとき) 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的関数その他 1 関数f(x1, …, xn, y)が原始帰納的であれば、 有限和も有限積も原始帰納的である。 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的関数その他 2 関数f(x1, … , xn , y)が原始帰納的であれば、 以下も原始帰納的である。 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的な集合と述語 特徴関数CS, Cp 集合S∈Nn 述語P(x1, …, xn) CS(x1, …, xn)=0 ((x1, …, xn)∈Sのとき) CS(x1, …, xn)=1 ((x1, …, xn)∈Sのとき) が原始帰納的であるとき、Sは原始帰納的集合。 述語P(x1, …, xn) Cp(x1, …, xn)=0 (P(x1, …, xn)のとき) Cp(x1, …, xn)=1 (¬P(x1, …, xn)のとき) が原始帰納的であるとき、Pは原始帰納的述語。 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的述語と関数の例 1 述語x=y 述語x<y 述語x≦y 関数max(x, y) 関数min(x, y) 関数max(x1, …, xn) 述語x|y (xはyを割り切る) 述語Pr(x) (xは素数である) 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的述語と関数の例 2 述語x/y (xをyで割ったときの商) 第n+1番目の素数を表す関数pn 関数 aとiの関数 l(a)=aの素因数分解における0でない数の個数 (a≠0のとき) l(a)=0 (a=0のとき) aとiの関数 (a)i=aの素因数分解におけるpiのべき数  (a≠0のとき) (a)i=0 (a=0のとき) 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的述語と関数の例 3 関数 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的集合の性質 集合S, R∈Nnが原始帰納的であれば、 S=Nn―S S∪R S∩R も原始帰納的。 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的述語の性質 1 P(x1, …, xr)を原始帰納的述語とし、 h1, …, hrをn変数の原始帰納的関数とする。 このとき述語 P(h1(x1, …, xn), …, hr (x1, …, xn)) は原始帰納的。 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的述語の性質 2 g1, …, gm+1をn変数の原始帰納的関数とし、 P1, …, Pmをn変数の原始帰納的述語で、 各(x1, …, xn)に対して高々1個のPi(x1, …, xn)が 真になるものとする。 このとき関数 f(x1, …, xn)=g1(x1, …, xn) (P1(x1, …, xn)のとき) … f(x1, …, xn)=gm(x1, …, xn) (Pm(x1, …, xn)のとき) f(x1, …, xn)=gm+1(x1, …, xn) (それ以外のとき) は原始帰納的。→証明 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的述語の性質 3 P(x1, …, xn), Q(x1, …, xn)を 原始帰納的述語とすれば、述語 ¬P(x1, …, xn) は原始帰納的。→証明 2019/1/11 佐賀大学理工学部知能情報システム学科

原始帰納的述語の性質 4 P(x1, …, xn, y)を原始帰納的述語とすれば、 述語 (∃y)<zP(x1, …, xn , y) ⇔P(x1, …, xn , 0)∨…∨ P(x1, …, xn , z-1) (∀y)<zP(x1, …, xn , y) ⇔P(x1, …, xn , 0)∧…∧ P(x1, …, xn , z-1) は原始帰納的。→証明 2019/1/11 佐賀大学理工学部知能情報システム学科

最後に レポートを配布します ミニテストを提出してから帰ること 次回は、 帰納的関数3 小レポート回収 2019/1/11 開始 レポートを配布します ミニテストを提出してから帰ること 次回は、 帰納的関数3 小レポート回収 2019/1/11 佐賀大学理工学部知能情報システム学科