電磁気学C Electromagnetics C 5/28講義分 電磁波の反射と透過 山田 博仁.

Slides:



Advertisements
Similar presentations
大学院物理システム工学専攻 2004 年度 固体材料物性第 8 回 -光と磁気の現象論 (3) - 佐藤勝昭ナノ未来科学研究拠点.
Advertisements

電磁気学C Electromagnetics C 7/27講義分 点電荷による電磁波の放射 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 6/5講義分 電磁波の反射と透過 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 6/21講義分 共振器と導波路 山田 博仁.
電磁気学C Electromagnetics C 7/1講義分 光導波路と光共振器 山田 博仁.

5.アンテナの基礎 線状アンテナからの電波の放射 アンテナの諸定数
電磁気学C Electromagnetics C 7/13講義分 電磁波の電気双極子放射 山田 博仁.
静電場、静磁場におけるMaxwellの式
2.伝送線路の基礎 2.1 分布定数線路 2.1.1 伝送線路と分布定数線路 集中定数回路:fが低い場合に適用
電磁気学Ⅱ Electromagnetics Ⅱ 5/15講義分 電磁場のエネルギー 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 6/23講義分 電磁場の運動量 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 6/20講義分 共振器と導波路 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 7/7講義分 電磁波の偏り 山田 博仁.
分布定数回路(伝送線路)とは 電圧(電界)、電流(磁界)は回路内の位置に依存 立体回路 TE, TM波
演習問題解答例 3. Fパラメータが既知の二端子対回路に電圧源 Eとインピーダンス ZGが接続された回路に対する等価電圧源を求めよ。 I1
電磁波 アンテナ.
横磁化成分と歳差運動 M0 横磁化Mxy 回転座標系 90°RFパルスにより、縦磁化成分Moはxy平面に倒れる(横磁化生成)
電磁気学Ⅱ Electromagnetics Ⅱ 6/19講義分 共振器と導波路 山田 博仁.
電磁気学C Electromagnetics C 6/12講義分 光導波路と光共振器 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 5/19講義分 電磁場のエネルギー 山田 博仁.
大学院物理システム工学専攻2004年度 固体材料物性第7回 -光と磁気の現象論(2)-
電磁気学C Electromagnetics C 6/8講義分 電磁波の反射と透過 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 6/30講義分 電磁波の反射と透過 山田 博仁.
電気回路学Ⅱ 通信工学コース 5セメ 山田 博仁.
コンピュータサイエンスコース、ナノサイエンスコース4セメ開講
コンピュータサイエンスコース、ナノサイエンスコース4セメ開講
電磁気学C Electromagnetics C 7/17講義分 点電荷による電磁波の放射 山田 博仁.
逐次伝達法による 散乱波の解析 G05MM050 本多哲也.
電磁気学C Electromagnetics C 4/27講義分 電磁場のエネルギー 山田 博仁.
大学院理工学研究科 2004年度 物性物理学特論第4回 -光と磁気の現象論(3):反射とKerr効果-
電気回路学Ⅱ コミュニケーションネットワークコース 5セメ 山田 博仁.
電気回路学Ⅱ エネルギーインテリジェンスコース 5セメ 山田 博仁.
電磁気学C Electromagnetics C 6/5講義分 電磁波の偏波と導波路 山田 博仁.
電気回路学 Electric Circuits 情報コース4セメ開講 分布定数回路 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 8/4講義分 電気双極子による電磁波の放射 山田 博仁.
電磁気学C Electromagnetics C 6/17講義分 電磁波の偏り 山田 博仁.
電気回路学Ⅱ コミュニケーションネットワークコース 5セメ 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 6/9講義分 電磁場の波動方程式 山田 博仁.
電磁気学C Electromagnetics C 5/29講義分 電磁波の反射と透過 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 5/23, 5/30講義分 物質中でのMaxwell方程式 電磁波の反射と透過 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 5/9講義分 電磁場のエネルギー 山田 博仁.
平面波 ・・・ 平面状に一様な電磁界が一群となって伝搬する波
電磁気学Ⅱ Electromagnetics Ⅱ 8/11講義分 点電荷による電磁波の放射 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 5/29講義分 電磁場の運動量 山田 博仁.
大学院理工学研究科 2004年度 物性物理学特論第5回 -磁気光学効果の電子論(1):古典電子論-
演習問題1の解説 電源電圧 E, 内部インピーダンスが Z0 の電源に、伝搬定数が g , 特性インピーダンスが Z0, 長さ が l の線路が接続されている。これに等価な電圧源 を求めよ。さらに、線路が無損失なら、それはどのように表わせるか? ただし、sinh(iθ) = i sinθ, cosh(iθ)
電気回路学Ⅱ 通信工学コース 5セメ 山田 博仁.
インピーダンスp型回路⇔T型回路間での変換
電気回路学Ⅱ エネルギーインテリジェンスコース 5セメ 山田 博仁.
電気回路学Ⅱ コミュニケーションネットワークコース 5セメ 山田 博仁.
静電場、静磁場におけるMaxwellの式
電磁気学Ⅱ Electromagnetics Ⅱ 6/14講義分 電磁波の偏り 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 6/28, 7/5講義分 光導波路と光共振器 山田 博仁.
誘導起電力は 巻数と 磁束の時間変化 に比例する.
電磁気学Ⅱ Electromagnetics Ⅱ 5/7, 5/14講義分 静電場、静磁場での扱い 山田 博仁.
時間が進んでも,違う場所で引数の同じ場所がある。 一般の波動はいろいろな周波数wを持つ単振動の重ね合わせ!
電気回路学 Electric Circuits 情報コース4セメ開講 分布定数回路 山田 博仁.
電磁気学C Electromagnetics C 6/15講義分 電磁波の偏波と導波路 山田 博仁.
電気回路学Ⅱ 通信工学コース 5セメ 山田 博仁.
線路上での電圧、電流 Ix I0 添え字は、線路上での位置を表わす ZL γ, Z0 Vx V0 x x = 0
電磁気学C Electromagnetics C 5/20講義分 電磁場の波動方程式 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 5/22, 5/29講義分 物質中でのMaxwell方程式 電磁波の反射と透過 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 7/2講義分 共振器と導波路 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 5/28, 6/4講義分 物質中でのMaxwell方程式 電磁波の反射と透過 山田 博仁.
電磁気学C Electromagnetics C 4/24講義分 電磁場のエネルギー 山田 博仁.
電磁気学C Electromagnetics C 7/10講義分 電気双極子による電磁波の放射 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 6/11, 6/18講義分 物質中でのMaxwell方程式 電磁波の反射と透過 山田 博仁.
電磁気学Ⅱ Electromagnetics Ⅱ 6/7講義分 電磁波の反射と透過 山田 博仁.
電磁気学C Electromagnetics C 6/24講義分 共振器と導波路 山田 博仁.
Presentation transcript:

電磁気学C Electromagnetics C 5/28講義分 電磁波の反射と透過 山田 博仁

電磁波における重要な関係式 伝搬速度: v 真空中の光速度: c 波長: λ 周波数: f 角周波数: ω 周期: T 波数: k 電場(電界)ベクトル: E 磁場(磁界)ベクトル: H 波数ベクトル: k インピーダンス: Z 真空のインピーダンス: Z0 電界振幅: |E| 磁界振幅: |H| 電磁場のエネルギー密度: u ポインティングベクトル: S (等方性媒質の場合) 電磁場の運動量密度: g

正弦波 +x 方向に伝搬する正弦波 波数 角周波数 位相角 従って、波数と角周波数の比は、 x1 x = 0 t = T x = λ 波の伝搬速度 t1 もし、時間を止めて(t = t1)見てみると、 もし、場所を決めて(x = x1)見てみると、 +x -x +t -t

参考) 伝送線路上の電圧波の伝搬 ZL E x 入射波 反射波 ej(ωt±βx) = cos(ωt±βx)+j sin(ωt±βx)は、∓x方向に進む角周波数ω, 位相定数β の正弦波 vp: 位相速度 ここで、 x は波の振幅を表し、α > 0 (α < 0)なら、xが増大する方向に振幅が増大(減少)する 因みに、波の包絡線の形状が伝わる速度を群速度: vgという x

異なる媒質の界面における境界条件 誘電率 e1, e2 の異なる媒質が接している界面 界面には真電荷が面密度 se にて存在 n -n 5.3 (教科書p.64) の復習 誘電率 e1, e2 の異なる媒質が接している界面 界面には真電荷が面密度 se にて存在 n -n 単位法線ベクトル + 界面での 真電荷密度 se 界面 e1 e2 S D1 界面での電束密度 D に対して、どのような条件が満たされなければならないか? D2 電場に関するGaussの法則を、界面に 存在する高さが無限小の円柱に適用 Gaussの定理 従って、 上式は、任意の面 S に対して成り立つことから、 表面電荷 se が存在しなければ、

異なる媒質の界面における境界条件 誘電率 e1, e2 の異なる媒質が接している界面 e1 e2 界面 Dh Dl t: 単位接線ベクトル DS C Faradayの電磁誘導の法則を、図のように界面の一部を囲む高さ Dh が無限小の長方形 DS に適用 ここで、B/t は境界面の近くで有限であるから、DS→0の極限で右辺の積分はゼロになる 従って、Stokesの定理を用いると左辺は、 従って、 上式は、任意の Dl の長方形に対して成り立つことから、

異なる媒質の界面における境界条件 透磁率 m1, m2 の異なる媒質が接している界面 単位法線ベクトル 9.4 (教科書p.146) の復習 透磁率 m1, m2 の異なる媒質が接している界面 界面での磁束密度 B に対して、どのような条件が満たされなければならないか? n -n 単位法線ベクトル m1 m2 界面 S B1 B2 磁場に関するGaussの法則を、界面に 存在する高さが無限小の円柱に適用 Gaussの定理 従って、 上式は、任意の面 S に対して成り立つことから、 よって、

異なる媒質の界面における境界条件 透磁率 m1, m2 の異なる媒質が接している界面 ie: 界面での 伝導電流密度 ie Dh Dl t: 単位接線ベクトル t H1 界面での磁場 H に対して、どのような条件が満たされなければならないか? C H2 DS Ampere-Maxwellの方程式を、図のように界面の一部を囲む高さ Dh が無限小の長方形 DS に適用 ここで、界面に表面電流が存在しない限り、ie も D/t も境界面の近くで有限であるから、DS→0の極限で右辺はゼロになる 従って、Stokesの定理を用いると左辺は、 従って、

異なる媒質の界面における境界条件 E1 E2 e1 e2 電場の接線成分は連続 電束密度の法線成分は連続 D1 D2 e1 e2 表面電荷が 存在しない場合 t は界面に平行な単位接線ベクトル n は界面に垂直な単位法線ベクトル H1 H2 m1 m2 磁場の接線成分は連続 磁束密度の法線成分は連続 B1 B2 m1 m2 表面電流が 存在しない場合

界面での反射と透過 2種類の媒質が x-y 平面 (z = 0) を境に接しており、 z > 0 を媒質Ⅰが、 z < 0 を媒質Ⅱが満たしている。平面電磁波が媒質Ⅰから媒質Ⅱに入射角 qi で斜め入射し、その一部が反射角 qr で反射され、またその一部が透過角 qt で媒質Ⅱ内に透過する場合を考える。 x z 媒質Ⅰ 媒質Ⅱ Ei Hi Er Hr ki kr kt Ht Et y qi qr qt 入射波、反射波および透過波の波数ベクトルと角周波数をそれぞれ (ki, wi), (kr, wr) および (kt, wt) とし、電場ベクトルは図の様に x-z 平面上にあり、磁場は y 成分のみとする。 波の位相は、 入射波 反射波 透過波

界面での反射と透過 境界面 (z = 0) 上の全ての点で、任意の時刻に波の位相が等しくなるので、 この条件が成立しなければならない の関係より、媒質Ⅰ内で電磁波の速度 v1 は入射波、反射波に共通なので、 ならば、 v1 v2 媒質Ⅰ 媒質Ⅱ qi qr qt ki kr kt 従って、 (反射の法則) (Snellの法則) v1 と v2 は、それぞれ媒質Ⅰ、Ⅱ内を進む電磁波の速度 比誘電率 n1, n2は各々、媒質Ⅰ, 媒質Ⅱの屈折率

界面での反射と透過 入射波 x z 媒質Ⅰ 媒質Ⅱ Ei Hi Er Hr ki kr kt Ht Et y qi qr qt 反射波 透過波 Z1, Z2は、それぞれ媒質1, 2の電磁インピーダンス

界面での反射と透過 次に、電磁波の振幅について考えると、界面での電場 E および磁場 H の接線成分の連続性より、 従って、 上式から Et を消去すると、 ここで、θi = θr の関係を用いている (電界反射係数) 上式から Er を消去すると、 (電界透過係数)

界面での反射と透過 因みに、磁界に対する反射係数および透過係数を求めてみると、 媒質の屈折率 n は、真空中での光の速度 c と媒質中での光の速度 v の比で表され、 特に、媒質1と2が非磁性の場合には m1 = m2 = m0 が成り立ち、それぞれの媒質の屈折率は真空の固有インピーダンス Z0 を用いて、 と表せる。 従って、反射係数と透過係数は、

界面での反射と透過 垂直入射の場合には、qi = qt = 0 とすることにより反射係数と透過係数は、 n1 n2 t r i 入射波のエネルギー流に対する反射波と透過波のエネルギー流の比をそれぞれ反射率 R および透過率 T という。 入射波、反射波、透過波のエネルギー流は、各々に対するポインティングベクトルの 大きさの界面に垂直方向成分であるから、 Z1 Z2 媒質Ⅰ 媒質Ⅱ qi qr qt 入射波 反射波 透過波 入射エネルギー流 Si Sr 反射 エネルギー流 St 透過エネルギー流

界面での反射と透過 従って、反射率 R と透過率 T は、 屈折率 n1, n2 で表せば、反射率 R と透過率 T は、

演習: 界面での反射と透過 図に示す様に、2種類の媒質が x-y 平面 (z = 0) を境に接している。今、平面電磁波が媒質Ⅰから媒質Ⅱに入射角 qi で斜め入射する場合を考える。 x z 媒質Ⅰ 媒質Ⅱ Ei Hi Er Hr ki kr kt Ht Et y qi qr qt 入射波、反射波および透過波の波数ベクトルと角周波数をそれぞれ (ki, wi), (kr, wr) および (kt, wt) とし、電場ベクトルは図の様に x-z 平面上にあり、磁場は y 成分のみとする。 電場、磁場ベクトルの向きを教科書とは違えております 波の位相は、 入射波 反射波 透過波 境界面 (z = 0) 上の全ての点で、任意の時刻に波の位相が等しくなるので、 この条件が成立しなければならない

演習: 界面での反射と透過 入射波 x z 媒質Ⅰ 媒質Ⅱ Ei Hi Er Hr ki kr kt Ht Et y qi qr qt 反射波 透過波 Z1, Z2は、それぞれ媒質1, 2の電磁インピーダンス

演習: 界面での反射と透過 界面での電場 E および磁場 H の接線成分の連続性より、 従って、 上式から Et を消去すると、 ここで、θi = θr の関係を用いている (電界反射係数) 反射係数や透過係数の値は、電界や磁界ベクトルの取り方によって異なる 上式から Er を消去すると、 (電界透過係数) 磁界に対する反射係数および透過係数は、