発光励起スペクトル測定法で見る ドープ量子井戸の光放出と光吸収の関係

Slides:



Advertisements
Similar presentations
顕微発光分光法による n 型ドープ量子細線の研 究 秋山研究室 D3 井原 章之 ’ 07 11/20 物性研究所 1次元電子ガスを内包し、 状態密度の発散や 強いクーロン相互作用の 発現が期待される。 しかし試料成長や測定が難しいた め、 バンド端エネルギー領域の 吸収スペクトルに現れる特徴を.
Advertisements

Localized hole on Carbon acceptors in an n-type doped quantum wire. Toshiyuki Ihara ’05 11/29 For Akiyama Group members 11/29 this second version (latest)
データ分析入門(12) 第12章 単回帰分析 廣野元久.
点対応の外れ値除去の最適化によるカメラの動的校正手法の精度向上
現場における 熱貫流率簡易測定法の開発  五十嵐 幹郎   木村 芳也 
較正用軟X線発生装置のX線強度変化とスペクトル変化
導波路放出光解析による量子細線の光吸収測定
電子物性第1 第5回 ー 原子の軌道 ー 電子物性第1スライド5-1 目次 2 はじめに 3 場所の関数φ 4 波動方程式の意味
木下基、Manyalibo J. MatthewsA、秋山英文
単色X線発生装置の製作 ~X線検出器の試験を目標にして~
2次元蛍光放射線測定器の開発 宇宙粒子研究室 氏名 美野 翔太.
me g 探索実験用液体Xeカロリメータの
埼玉大学大学院理工学研究科 物理機能系専攻 物理学コース 06MP111 吉竹 利織
前回の内容 結晶工学特論 第5回目 Braggの式とLaue関数 実格子と逆格子 回折(結晶による波の散乱) Ewald球
顕微発光分光法によるドープ量子細線中の 1次元電子系の研究
ドープT型量子細線の発光(PL)および 発光励起(PLE)スペクトルと電子温度
原子核物理学 第4講 原子核の液滴模型.
Astro-E2衛星搭載 XISの データ処理方法の最適化
MBE成長GaAs表面の平坦化とそのAFM観察
信号電荷の広がりとデータ処理パラメータの最適化
井原章之 (Toshiyuki Ihara) 東京大学 秋山研究室 D2
一連のドープ細線における バンド端とフェルミ端の構造
Dissociative Recombination of HeH+ at Large Center-of-Mass Energies
黒体輻射とプランクの輻射式 1. プランクの輻射式  2. エネルギー量子 プランクの定数(作用量子)h 3. 光量子 4. 固体の比熱.
T型量子細線レーザーの利得測定と 多体理論計算との比較 秋山研 助教 吉田正裕 Outline: 1. 背景と目的
10MeV近傍の2H(p,pp)n反応におけるQFS断面積異常探索
発光と発光励起スペクトルから見積もる 低次元電子系のキャリア温度
軽井沢合宿@上智大学セミナーハウス ( ) GaAs T型量子細線における 高密度キャリア効果 秋山研  吉田正裕.
Kennard-Stepanov関係式を用いた ドープ量子井戸中の電子温度の絶対測定
原子核物理学 第2講 原子核の電荷密度分布.
22章以降 化学反応の速度 本章 ◎ 反応速度の定義とその測定方法の概観 ◎ 測定結果 ⇒ 反応速度は速度式という微分方程式で表現
ルンゲクッタ法 となる微分方程式の解を数値的に解く方法.
ATLAS実験における J/Y->mm過程を用いたdi-muon trigger efficiency の測定方法の開発及び評価
Arm-Stem電流注入型T型 量子細線レーザーの発振特性
T型量子細線における励起子-プラズマクロスオーバー(現状のまとめ)
治療用フィルムによる線量分布測定の 基礎的検討Ⅱ
高エネルギー天体グループ 菊田・菅原・泊・畑・吉岡
発光量絶対値測定 - ホタル- ルミノールの発表は無し …
空洞型ビーム軌道傾きモニターの設計 東北大学 M1 岡本 大典 .
大光量Long Pulseに対するMPPCの性能評価
(昨年度のオープンコースウェア) 10/17 組み合わせと確率 10/24 確率変数と確率分布 10/31 代表的な確率分布
宇宙線ミューオンによる チェレンコフ輻射の検出
Charmonium Production in Pb-Pb Interactions at 158 GeV/c per Nucleon
References and Discussion
BIのデータ解析法と 高エネルギー側の検出効率
X線CCD検出器 ーCCD‐CREST(deep2)ー の性能評価と性能向上 (京阪修論発表会)
顕微発光分光法によるドープ量子細線中の 1次元電子系の研究
X線CCD新イベント抽出法の 「すざく」データへの適用
X線CCD新イベント抽出法の 「すざく」データへの適用
第3章 線形回帰モデル 修士1年 山田 孝太郎.
一連のドープ細線における バンド端とフェルミ端の構造
発光と発光励起スペクトルから見積もる 低次元電子系のキャリア温度
計算と実測値の比較 高エネルギー加速器研究機構 平山 英夫.
ILCバーテックス検出器のための シミュレーション 2008,3,10 吉田 幸平.
落下水膜の振動特性に関する実験的研究 3m 理工学研究科   中村 亮.
メスバウアー効果で探る鉄水酸化物の結晶粒の大きさ
α decay of nucleus and Gamow penetration factor ~原子核のα崩壊とGamowの透過因子~
軽い原子核ビームに対する無機シンチレータの応答の研究の発表を行います。
原子核物理学 第7講 殻模型.
増倍管実装密度の観測量への影響について.
原子核物理学 第6講 原子核の殻構造.
モデルの微分による非線形モデルの解釈 明治大学 理工学部 応用化学科 データ化学工学研究室 金子 弘昌.
ASTRO-E2搭載CCDカメラ(XIS)校正システムの改良及び性能評価
現実的核力を用いた4Heの励起と電弱遷移強度分布の解析
2008年 電気学会 全国大会 平成20年3月19日 福岡工業大学 放電基礎(1)
弱電離気体プラズマの解析(LXXVI) スプラインとHigher Order Samplingを用いた 電子エネルギー分布のサンプリング
高次のサンプリングとスプラインを用いた電子エネルギー分布のサンプリング
TES型カロリメータのX線照射実験 宇宙物理実験研究室 新井 秀実.
T-型量子細線レーザーにおける発振および発光の温度特性
60Co線源を用いたγ線分光 ―角相関と偏光の測定―
Presentation transcript:

発光励起スペクトル測定法で見る ドープ量子井戸の光放出と光吸収の関係 23pPSB-54 2007年秋 日本物理学会 北海道大学 発光励起スペクトル測定法で見る ドープ量子井戸の光放出と光吸収の関係 井原章之, 吉田正裕, 秋山英文, Loren N. Pfeiffer A, Ken W. West A 東大物性研,CREST-JST,ルーセント・ベル研 A アウトライン 1: イントロダクション、サンプル構造、測定系 2: PL(PLE)の励起(検出)エネルギー依存性 3: ln(PL/PLE)プロットと温度T 4: 不均一幅の影響(50Kと6Kの例) 5: ln(PL/PLE)プロットの温度依存性 6: 結論、まとめ

Kennard-Stepanov relation 1:イントロダクション <背景> Kennard-Stepanov relation :熱平衡系の発光(I)と光吸収(A)の間に成立する一般的関係式 [1] hv : 光子エネルギー kB : ボルツマン定数 T* : 温度 ※ Neporent-McCumber relationとも呼ばれ、Einstein’s relationおよび    Kubo-Martine-Schwinger relationにおける、弱励起極限の表式に相当する。 熱平衡系では、T*は環境温度(Tenv)と一致。 熱平衡でない場合はT*≠Tenvとなる[2]。 → 絶対温度測定が可能 (T*>Tenvもしくは式が成立しない) [1] E. H. Kennard, Phys. Rev. 11, 29 (1918). B. I. Stepanov, Sov. Phys. -Doklady 2, 81 (1957). [2] Denise A. Sawicki and Robert S. Knox, Phys. Rev. A 54, 4837 (1996).

単一量子井戸に対する共鳴励起PL、およびPLEスペクトルを 測定できる系を開発し、PLとPLEの関係を調べ、 絶対温度測定の可能性を探る。 1:イントロダクション 半導体量子構造に対する実験例 [3] → 50K以下の低温で、非共鳴励起のもとでは、T*>Tenvとなるか、成立しない。 [3] S. Chatterjee, et al. Phys. Rev. Lett. 92, 067402 (2004).; D.Y. Oberli et al. Phys. Status Solidi B 178, 211 (2000). 共鳴励起ならばT*=Tenvとなると期待できる。 しかし、実験的に明らかにした例はない。 (共鳴励起のPL実験は、励起光の散乱でPLが埋もれてしまうために、測定が難しい。) <目的> 単一量子井戸に対する共鳴励起PL、およびPLEスペクトルを 測定できる系を開発し、PLとPLEの関係を調べ、 絶対温度測定の可能性を探る。 PL (photoluminescence) spectrum (発光スペクトル) : 単色の励起光を当ててキャリアを生成し、緩和後に放出される発光スペクトルを測定。 PLE (photoluminescence-excitation) spectrum (発光励起スペクトル) : 励起エネルギーに対して発光の検出量をプロットする。吸収スペクトルの形状を反映。

図1:サンプル構造、クライオスタット構造、光学測定系 1:サンプル構造、測定系 ・試料:変調ドープ量子井戸(2DEG濃度 : 6x1010cm-2) (ノンドープ系[6]よりも平衡に達しやすいと期待) ・環境温度(Tenv ) はSiダイオード温度計で測定。(精度は100K以下で±1 K、 100K以上で±1%) ・励起光の偏光と直交する偏光成分のPLのみ検出するとともに、検出側の結像レンズの手前にアイリスを置くことで、レーザー散乱光を減らした。 図1:サンプル構造、クライオスタット構造、光学測定系

PLスペクトルのノイズはCCDカメラの暗電流に起因。 PLスペクトル形状の励起エネルギー依存性が小さく抑えられているのは、弱励起(1.7mW)での測定のおかげ。 図3:PLスペクトルの励起エネルギー依存性(33±1K)。励起エネルギーは上から順に1.588, 1.592, 1.596, 1.6 eV。スペクトルは全て規格化してあり、それぞれ9, 6, 3, 0のオフセットを加えてある。露光時間は60秒。

エラーバーはCCDカメラの暗電流から見積もったもので、検出フォトン数が少ないときに大きくなる。 2:PLEの検出エネルギー依存性 エラーバーはCCDカメラの暗電流から見積もったもので、検出フォトン数が少ないときに大きくなる。 このため、上側の2つのようにPLピークのテールで解析した場合は、吸収係数の小さい低エネルギー側でノイズが大きい。 下側の2つのように、PLピークの主成分が含まれるように解析した場合はノイズは小さく、形状もほぼ一致する。 図4:PLEスペクトルの検出エネルギー依存性(33±1K)。PLスペクトルに対して様々な検出エネルギー(上から順に1.585, 1.599, 1.59, PL全て)で解析。スペクトルは全て規格化してあり、それぞれ9, 6, 3, 0のオフセットを加えてある。露光時間4秒、点数は100点。

ln(PL/PLE)が光子エネルギーに対して線形に減衰。 PLとPLEから温度を求めるにあたって、 ln(PL/PLE)を導入し、式(1)を書き直した以下の表式を用いる。 (Cは定数パラメータ) 図5:青の縦線がln(PL/PLE)で、長さはPLとPLEのノイズから見積もられたエラーバーを反映。 PLEはPLピーク全てが含まれるようにして解析。PLの励起エネルギーは1.59 eV(PLのピークエネルギーに共鳴) ln(PL/PLE)が光子エネルギーに対して線形に減衰。

3: ln(PL/PLE)のプロットと温度T* 温度T*は、ln(PL/PLE)プロットの傾きから求められる。 傾きとその標準偏差を求めるために、重み付き最小二乗法を用いた。 ※データから算出される標準偏差とコンシステントになるように現象論的に定数項sphを導入 求まった傾きは0.346±0.001 (1/meV)で、温度に換算すると33.6±0.1 Kであった。 Tenv(=33±1 K)と良い一致 図6:重み付き最小二乗法を用いた、ln(PL/PLE)の傾きとその誤差の見積もり

3: ln(PL/PLE)のプロットと温度T* 弱励起によってPLの励起エネルギー依存性を抑えたが、 T*の見積もりでは無視できない影響を及ぼす。 試しに1.585から1.606 eVの範囲で様々な励起エネルギーで測定してみると、 34 Kの付近を±1.5 Kの不確かさで分布することが分かった。(現時点で原因は不明) 図7:ln(PL/PLE)プロットおよびT*の励起エネルギー依存性 ※ PLEの検出エネルギー依存性に関しては、PLピークの主成分を含む限り、T*は変化なし

PLE(a)に現われた2つのピーク(1.591、1.596 eV)は、試料の不均一性つまり 1原子層(ML)厚みの揺らぎに起因。 4:不均一幅の影響(50Kの例) 次に、試料の不均一性の影響について PLE(a)に現われた2つのピーク(1.591、1.596 eV)は、試料の不均一性つまり 1原子層(ML)厚みの揺らぎに起因。 どちらのピークで励起した場合でも、ln(PL/PLE)は光子エネルギーに対して線形に減衰。 傾きから見積もられる温度に大きな差は現われない。 → 高温はキャリア拡散が大きく、 試料の不均一性の影響が小さい。 図8:51±1KにおけるPLEスペクトル(a)と、異なる励起エネルギー(1.596、1.59 eV)で測定したPL、およびln(PL/PLE)プロット(b,c)。

PLE(d)の2つのピーク(1.592 eV、1.597 eV)はML揺らぎに起因。 4:不均一幅の影響(6Kの例) では、低温ではどうか? PLE(d)の2つのピーク(1.592 eV、1.597 eV)はML揺らぎに起因。 1.599 eVで励起した場合(e)、高エネルギー側のMLからの発光の影響で、ln(PL/PLE)が1.595 eVあたりで折れ曲がった。 → キャリアの非平衡分布を反映。 この一方で、1.591 eVで励起した場合(f)は、ln(PL/PLE)が直線となり、見積もられる温度(T*=6.31 K)が環境温度(6±1K)とよい一致を示した。 → 6Kという低温であっても、共鳴励起のもとならば、系を熱平衡に保ったまま測定可能。 図9:6±1KにおけるPLEスペクトル(d)と、異なる励起エネルギー(1.599、1.591 eV)で測定したPL、およびln(PL/PLE)プロット(e,f)。

5:ln(PL/PLE)プロットの温度依存性 最後に、各温度での特徴についてまとめ ※ PLEの検出エネルギーは、PLピーク全体が含まれるようにした。 ※ T*とTenvの有効桁数はそれぞれ、重み付き最小二乗法で求めた標準偏差、およびセンサーの誤差から決めた。 図10:(a)共鳴励起の条件下で、様々な温度のもとでプロットしたln(PL/PLE)。 (b) T*とTenvの関係。エラーバーは励起エネルギー依存性に起因する不確かさに対応。

5:ln(PL/PLE)プロットの温度依存性 各温度の特徴 6-20 K 共鳴励起のもとで熱平衡分布。 T*の不確かさは±0.6K。 非共鳴励起の条件下で、明らかな非平衡分布 20-100 K 共鳴・非共鳴に関わらず熱平衡分布。 T*の不確かさは±1.5K。 100-200K 共鳴・非共鳴に関わらず、T*≠Tenvが目立つ。 (おそらく測定上の問題で、非平衡分布ではない) T*は真の値から10~20K程度ずれる 室温付近 1.7mWでは測定不能 今回測定した5-200Kの温度範囲で、T*とTenvはほぼ一致。 全体的な不確かさは3-10%。(6-100Kの原因は明らかでない)

<結論> PLとPLEの比はKennard-Stepanov関係式に従い、 その比から絶対温度を求めることができる 6:結論 <結論> 様々な温度において共鳴励起のもとで測定したPLとPLEの比が exp(-hv/kT)に比例し、温度Tは環境温度とほぼ一致した。 PLとPLEの比はKennard-Stepanov関係式に従い、 その比から絶対温度を求めることができる ※ 関係式はスペクトル形状に依存しないので、1次元電子系や磁場中の2次元電子系など、階段関数状の状態密度を持たない系であっても、共鳴PLとPLEが測定できれば、今回の温度測定法が使える。

PLの励起エネルギー依存性の問題を明らかにして、 T*の不確かさを減らすための可能性を探る。 6:まとめ まとめ n型ドープ単一量子井戸のPLとPLEスペクトルの関係を、共鳴励起の条件下で、6-200Kの温度範囲で調べた。 KennardやStepnaovが予言していたように、PLとPLEの比はexp(-hv/kT)に比例し、Tは環境温度と一致した。 共鳴PLおよびPLE測定という実験手法で、熱平衡系の絶対温度を測定できることが示された。 課題 : PLの励起エネルギー依存性の問題を明らかにして、 T*の不確かさを減らすための可能性を探る。