第12章 機械構成部品の性質 燒結技術の応用 昔し:溶解や鋳造の困難なセラミックス、高融点金属(W、Mo、など)、高融点化合物(WC、TiCなど) 近代: *青銅系燒結含油軸受け(多孔性を利用)。 *鉄系の含油軸受け 燒結技術が応用される理由は: *小型部品の大量生産 *合金粉の開発に伴って、予備焼結体を熱間鍛造により、真密度に近い大型部品の量産化.

Slides:



Advertisements
Similar presentations
セラミックス セラミックスの製造法 2 第 8 回 6月 11 日 ( 水). [2]セラミックスの種々の焼結法 (1)ホットプレス法(Hot Pressing:HP法)[:図 参 照] :カ-ボン製の型に原料粉末を入れ、 高周波加熱によりカ-ボン型を加熱し ながら加圧して焼結する方法 圧力:200~400kg/cm.
Advertisements

第2章.材料の構造と転位論の基礎. 2-1 材料の種類と結晶構造 体心立方格子( bcc ) 稠密六方晶格子( hcp ) 面心立方格子( fcc ) Cu 、 Ag 、 Au 、 Al 、 Ni 等 Mg 、 Zn 、 Ti 等 Fe 、 Mn 、 Mo 、 Cr 、 W 、 大部分の鋼 等 充填率.
一般に粉末の成形特性を評価する場合に用いる指標としては「圧縮性」と「成形性」が挙げられる。
第2章 機械の強度と材料 機械の必要条件 ★壊れない ★安全である ★正しく機能する そのためには・・・ ★適切な材料を使う
No.2 実用部材の疲労強度           に関する研究 鹿島 巌 酒井 徹.
セラミックス 第10回 6月25日(水)  セラミックスの物性②.
第13章 工具材料 工具材料:硬質合金(WC、TiC)、サーメットおよびセラミック。 13.1 硬質合金の燒結機構 13.2 硬質合金の性質
第1ページには,表題,所属,学籍番号,名前を記載する.
第2章 機械の強度と材料 機械の必要条件 ★壊れない ★安全である ★正しく機能する そのためには・・・ ★適切な材料を使う
機械工作1 ~主な金属材料について~.
第10章 焼結体の構造 焼結体の構成:粒子、粒界、気孔 焼結体の物性を左右する微細構造パラメーター:
溶解、酸化・還元、酸・塩基 埼玉大学 教育学部 理科教育講座 芦田 実
アルギン酸 アルギン酸とは‥ 化学構造 ・昆布、わかめに代表される褐藻類の細胞間物質の主成分
固体の圧電性.
高分子電気絶縁材料の撥水性の画像診断に関する研究
名古屋市南部の橋を長持ちさせる方法を考えてみよう。
セラミックス 第9回 6月18日(水) セラミックスの物性.
固体電解コンデンサの耐電圧と漏れ電流 -アノード酸化皮膜の表面欠陥とカソード材料の接触界面-
第14章 その他の燒結材料 14.1電気接点材料 要求される性質: 放電アークによる消耗および物質移動を防止すること 電気伝導性が大きいこと 接触抵抗が低いこと 変形に耐えること 適する材料:複合合金 電気伝導性はAg、Cu 骨格:高融点材料(W、Mo) Cu系:(20〜50)%Cu-W、(35〜65)%Cu-WC.
流体のラグランジアンカオスとカオス混合 1.ラグランジアンカオス 定常流や時間周期流のような層流の下での流体の微小部分のカオス的運動
第7章 シール装置の設計技術 シール(密封装置) ★水や空気,潤滑油などを扱う機械で使用される。 ★代表的なシール装置の構造と使用方法。
第9章 焼結炉と雰囲気 焼結方法: 圧粉体が壊れやすい→予備焼結(presintering) 予備燒結の必要性 圧力に耐えるため
3.いろいろな気体.
第3章.材料の強化機構.
電池の化学 電池とは化学反応によってエネルギーを 直接に(直流)電力に変換する装置 燃焼: 化学反応 → 熱エネルギー 電池: 化学反応
デジタルマニュファクチャリング ~モールドレス素形材製造技術~
科学的方法 1) 実験と観察を重ね多くの事実を知る 2) これらの事実に共通の事柄を記述する→法則 体積と圧力が反比例→ボイルの法則
Ⅰ 孤立イオンの磁気的性質 1.電子の磁気モーメント 2.イオン(原子)の磁気モーメント 反磁性磁化率、Hund結合、スピン・軌道相互作用
金属使用の歴史 ●優れた材料: 強度が高くて、一定の形を作るのが容易 ●有史以前の単体金属: 金、銀、銅、鉄、錫、鉛、水銀
MnCuNiFe合金の低温における 内部摩擦の研究
ボルタ電池 (-)Zn|H2SO4aq|Cu(+)
塑性加工の有限要素シミュレーション 豊橋技術科学大学  森 謙一郎 有限要素法の基礎 鍛造,押出し,深絞り加工への応用.
酸化と還元.
単色X線発生装置の製作 副島 裕一.
製図の基礎 12回目 7/2 日本工業大学 製図の基礎.
セラミックス 第11回目 7月4日(水).
第6章 金属の腐食と摩擦摩耗.
エレクトリオンのご紹介  Ver /3/26.
Fig. Crystal structure of Nd2Fe14B
塑性加工 第1回 今日のテーマ 塑性変形とは(塑性変形した後どうなる?) (応力(圧力)とひずみ(伸び)、弾性変形) 金属組織と変形
金属のイオン化傾向.
高速ブロー成形金型 ◆技術概要 ◆特徴 ◆用途 ◆実施例 ◆特許 ◆ライセンス条件等 60秒
鋳造 第3回 今日のテーマ 砂型以外の鋳造法 鋳鉄について (砂型の何を改良したか?何が犠牲になったか?)
n型熱電変換材料Nd2-xCexCuO4の結晶構造と熱電特性
鉄骨構造の特徴 Steel Frame Structure
燃えるとはどんなことか.
6.4.3電解法 (1)水溶液電解法 2種類: 直接法:板状の析出物→機械的に粉砕(Fe、Cr) *金属イオン濃度を低くする
微細ショットピーニング加工による 金属部品の機械的特性の向上
第一原理計算でひも解く合金が示す長周期積層欠陥構造の形成メカニズム
大同特殊鋼渋川工場 有害スラグ問題 学習会 市民オンブズマン群馬 代表 小川賢 2016年2月7日(日)13:30~
プリフォーム還元法による チタン粉末の製造
計算材料学研究室 電子システム工学専攻第2学年 杉浦悟朗
B4報告会 拡散対を用いた銅系金属間化合物の生成挙動
機械の安全・信頼性に関するかんどころ 機械製品に対する安全要求と設計方法 一般財団法人 機械振興協会 技術研究所.
化学量論組成フルホイスラー合金Fe2TiSn焼結体のp型熱電特性
円管の口絞り加工におけるカーリング現象の 有限要素シミュレーション
13族-遷移金属間化合物の熱電材料としての応用
廃PVC中有害金属の 最適な処理方法の評価
環境触媒グループ ガソリン車と比べて ディーゼル車の利点 現在ディーゼル車の走行台数が増加している ディーゼル車排ガス中での汚染物質 危害
直接通電による抵抗発熱を利用した 金属粉末の半溶融焼結
CO2大幅削減のためのCNF導入拡大戦略の立案 (3)バイオマスプラスチックによるCO2削減効果の検証
純チタン板の多段深絞り加工における焼付き防止
3.建築材料の密度 密度の支配因子 原子量 原子の配列状態 一般的に原子量(原子番号)が大きいほど、密度は大きい
スズに埋め込まれたダイヤモンドによる研磨のFEMシミュレーション
Au蒸着による酸化物熱電変換素子の内部抵抗低減化効果
稀少金属(レアメタル)非鉄金属、微量元素の現状と課題 平成18年4月28日
機械的特性向上 成形性向上 50. 加工・通電熱処理による アルミニウム合金板の機械的特性の向上 車両の軽量化 塑性加工学研究室 石黒 農
原子記号の復習 日本語→記号 記号→日本語   H.Kadoi.
圧延 平角線圧延, 異形線圧延, 精密圧延.
鉄(鉄鋼)の熱処理変化 小田原市立城北中学校 2年 志村 彩夏 それでは発表させていただきます。
Presentation transcript:

第12章 機械構成部品の性質 燒結技術の応用 昔し:溶解や鋳造の困難なセラミックス、高融点金属(W、Mo、など)、高融点化合物(WC、TiCなど) 近代: *青銅系燒結含油軸受け(多孔性を利用)。 *鉄系の含油軸受け 燒結技術が応用される理由は: *小型部品の大量生産 *合金粉の開発に伴って、予備焼結体を熱間鍛造により、真密度に近い大型部品の量産化 銅粉、鉄粉、軽量Al合金、Ti合金の燒結材料

12.1燒結鉄鋼材料 12.1.1鉄粉の製造と特性 1.還元鉄粉 2.噴霧鉄粉(atomized iron powder) 3.電解粉砕鉄粉 4.カーボニル(carbonyl)鉄粉 3,4は純度高いが、高価である。(高密度部品、電磁気用)

12.1.2 燒結鉄の製造 成形性は一般に電解、噴霧、還元およびカーボニル鉄粉の順に悪くなる。樹枝状⇒球状 良いもの:圧粉密度6.5〜7.2g/cm3、密度比83〜92% 悪いもの:圧粉密度5.7〜6.7g/cm3、密度比73〜86% 燒結雰囲気:水素、分解アンモニア、真空 400〜500˚Cで予備燒結、燒結温度は1100〜1200˚C 機械的な性質: *燒結密度が高くなると、引っ張り強度、耐衝撃性、硬さ、伸び率ともに上昇する。 *多孔率が小さくと、引っ張り強度は直線的に大きくなる。疲労強度は10%以下で急上昇

12.2各種燒結鋼 12.2.1燒結炭素鋼 強度を高めるため加炭が必要とする。 炭素の添加方法: *固体鉄の浸炭:COおよびCH4などの気体による。 *燒結鋼:鉄粉に黒鉛を添加する。 注意:木炭粉やその他の無定形炭素粉を添加しても浸炭しない。原因は炭素の活性面は酸素によって被覆され、鉄との接触が妨げられるからである。

(1)燒結炭素鋼の製造法と機械的な性質 1)製造法 *原料:黒鉛粉 *所定C含有率よりわずかに過剰の黒鉛を鉄  粉に混ぜる *0.5〜1.0%の潤滑剤を加える(グリセリンのよ うな液状のもの、分離防止) *燒結雰囲気:分解アンモニアガス *鉄粉に含有する酸素の除去(400〜500˚Cで水素 還元) *燒結温度:燒結鉄と同じく1100〜1200˚C

2)燒結炭素鋼の機械的な性質(図) (a)燒結密度比率:燒結密度/真密度=1−多孔率  黒鉛添加率(G)とともに増大する 硬さ、引っ張り強度も同じ傾向 伸び率:低黒鉛添加率側で低下が著しいが、0.4%以上は普通である。

(2)燒結銅鋼 Fe-Cu系の燒結合金:燒結青銅合金よりも高荷重に耐える。含油軸受けとして実用されてきた。 Fe-Cu系にCを加えた燒結銅鋼が、燒結鋼の中で最も需要が大きい。 1)製造法:燒結炭素鋼と同じく、原料粉の混合から発足し、合金鋼粉はあまり使用しない。 2)機械的な性質:黒鉛添加率およびCu含有率両方に影響される。 (3)燒結ニッケル鋼 高密度で強靱な燒結鋼 (4)その他の特殊鋼 Ni-Mo-Mn鋼、燒結クロム鋼、燒結ステンレス鋼

12.3燒結非鉄金属材料 12.3.1燒結青銅(Cu-Sn) 用途:含油軸受けおよびその他の構成材料(最も広く使用されてきた)

製造法: 原料:電解銅粉(噴霧、還元銅粉) 合金成分:8〜10%噴霧Sn粉 潤滑剤:0.5〜1,0%(ステアリン酸亜鉛) 2〜6t/cm2で成形 *合金粉の成形性が悪い 耐磨耗性:30%以下のPb粉 硬さ向上:5%以下のZn粉 雰囲気:水素、分解アンモニアガス、真空 燒結温度:770〜790˚C 含油処理:真空また加熱して大気中でおこなう。 含油軸受けの性能表示:荷重(P kg/cm2)、周速度(V m/min)、摩擦係数(μ)、軸温度上昇(T) PとVは相乗効果があるため、PV値で統合する。

その他は 燒結黄銅、 燒結アルミニウム青銅、 Cu-Al2O3系分散強化型合金、 燒結アルミニウム合金、 燒結ニッケル合金、 燒結チタン合金