Broadband RSEの制御法について

Slides:



Advertisements
Similar presentations
スペース重力波アンテナ (DECIGO) WG 第3回ミーティング (2005 年 5 月 12 日 国立天文台, 東京 ) 1 光共振型 DECIGO の可能性 安東 正樹 東京大学 理学系研究科 物理学教室.
Advertisements

2011/9/18 日本物理学会@弘前大学 1 LCGT 用 Power Recycling Cavity の設計に関する考察 我妻一博, 辰巳大輔, 陳タン A, 山本博章 B, 麻生洋一 C, LCGT Collaborators 国立天文台, 東大天文 A, カリフォルニア工科大 B, 東大理.
Lock Acquisition 国立天文台 新井 宏二 4th DECIGO WG 2006/5/11.
帯域可変型干渉計開発の現状 (計画研究カ)
LCGT f2f meeting 干渉計制御作業部会の現状報告 LCGT f2f meeting 東大理 麻生洋一.
2006年2月22日 宇宙重力波干渉計検討会 - 小型衛星とDECIGO - 川村静児 国立天文台
発表内容 研究背景 Txリークの概念 測定・シミュレーションの方法 測定結果・誤差解析 Txリークの主な原因を特定 まとめ
木下基、Manyalibo J. MatthewsA、秋山英文
ファブリ・ペローエタロンを用いた リング型外部共振器付半導体レーザーの 発振周波数制御
スペース重力波アンテナ DECIGO計画(1)
CLIOの報告 (2007年10月15日以降) レーザーに泣かされた半年間.
プロジェクト研究発表 重力波天文学 at Spring School, ICRR, The University of Tokyo
SQL観察に向けた微小振動子の振動特性評価
スペース重力波アンテナ DECIGO計画 宇宙科学シンポジウム @宇宙科学研究所 2003年1月9日
ガウス誤差関数を利用した 収束の速いヒルベルト変換ディジタルフィルタ
羽佐田葉子 2007年3月24日 アクロス研究会@静岡大学
宇宙重力波検出器用レーザー光源の光ファイバーを用いた安定化
宇宙重力波検出器用レーザー光源の光ファイバーを用いた安定化
LCGT Collaboration Meeting (2010年2月15日)
超伝導磁気浮上を用いた 低周波重力波検出器の開発
佐藤修一A ,高橋竜太郎A ,阿久津智忠B ,
ー 第1日目 ー 確率過程について 抵抗の熱雑音の測定実験
ー 第3日目 ー ねじれ型振動子のブラウン運動の測定
TAMA RSEの length制御信号取得 国立天文台、Caltech 宮川 治 辰巳大輔、新井宏二、苔山啓以子 TAMA Collaboration.
計画研究ク 重力波天文台用高性能光源の開発
重力波検出の将来計画 文責:川村静児(国立天文台) 2004年9月14日.
低周波重力波探査のための ねじれ振り子型重力波検出器
宇宙重力波検出器用大型複合鏡における熱雑音の研究
2010 年度 TAMA 開発研究計画 国立天文台 辰巳大輔 ICRR, Univ. of Tokyo.
LCGT詳細設計とR&D 大橋 正健 東大宇宙線研.
レーザー干渉計型重力波検出器のデジタル制御
電波の伝わり方
 1オーム系 Z0 = 1Ω (1)  オームの法則 (V:電圧,I:電流,R:抵抗orインピーダンス) V = IR (2)   1オーム系では,
安東 正樹池本尚史,小林洸,坪野公夫 (東京大学 理学系研究科)
LCGT and QND experiment at NAOJ
PMとSSB+PMによる信号取得 (1) - 概要と特徴 -
高分解能ビーム軌道傾きモニターの設計開発
東邦大学理学部物理学科 宇宙・素粒子教室 上村 洸太
ー 第3日目 ー ねじれ型振動子のブラウン運動の測定
Simulink で NXT を 動かしてみよう Simulink で NXT を動かす 微分値算出とフィルタ処理 ノーマルモード
小型衛星パスファインダーによる総合的試験
DPFのマスモジュールにおける残留ガス雑音の研究II
入出射光学系デザインミーティング - 主旨 -
サンテクノ技術セミナー 高周波技術入門 講座テキスト その3 平成18年6月30日.
レーザー干渉計制御のデジタル化 中川憲保,新井宏二A,佐藤修一A,高橋竜太郎A,
22/43 GHz帯フィルタによる 野辺山45 m鏡二周波同時観測の現状について
ノイズ.
第7回 高エネルギー宇宙物理連絡会研究会 「高エネルギー宇宙物理学の将来計画」
PMとSSB+PMによる信号取得 (1) - 概要と特徴 -
第17回DECIGOワークショップ 2018.11.1 川村静児(名古屋大学)
スペース重力波アンテナ DECIGO計画 I
Photo detector circuit of KAGRA interferometer (based on LIGO circuit)
KAGRA用 アウトプットモードクリーナの開発Ⅳ
Interferometer Photo Detector Circuit
1.85m電波望遠鏡 230GHz帯超伝導(SIS) 受信機の現況
LCGT and QND experiment at NAOJ
国立天文台 辰巳大輔,常定芳基 他 TAMA Collaboration
神岡での重力波観測 大橋正健 and the LCGT collaboration
CLIO 現状報告 (感度向上実験).
LCGTの制御法について 宗宮 健太郎 @本郷 2005年1月14日 K.Somiya.
実験結果速報 目的 装置性能の向上 RF入射実験結果 可動リミター挿入 RFパワー依存性 トロイダル磁場依存性 密度依存性
KAGRA用防振装置 プレアイソレータの性能測定 III
OMCのシミュレーション OMC特別セミナー Apr 東工大 宗宮 健太郎 K.Somiya.
苔山 圭以子 お茶の水女子大学大学院 2007年11月17日, 高エネルギー天体現象と重力波研究会
DECIGOの光学設計の検討 第17回DECIGOワークショップ 2018.11.1 川村静児(名古屋大学)
KAGRA用防振装置のプレアイソレータの性能測定
固体材質同士の接合面における機械損失について
小型衛星パスファインダーによる総合的試験
クライオ バッフル 山元 一広 東京大学 宇宙線研究所 重力波推進室
LCGT Design meeting (2004年4月9日 東京大学 山上会館, 東京)
Presentation transcript:

Broadband RSEの制御法について 宗宮 健太郎 技術検討会 2004年4月22日 K.Somiya

言いたいこと (1) LCGTの制御に15MHzと50MHzの2変調を使うことに なっているが、これだとアシンメトリが大きく、信号量も 小さいので、別の方法を提唱する (2)懸案事項であったスモール系のショットノイズリミテッド フィードバックノイズを計算したので、結果を発表する

目次 Broadband RSEとは RSEの制御法 ~ 高周波法と低周波法 FINESSEによる計算結果 フィードバックノイズの計算方法 まとめ ~ 低周波法のすすめ

Broadband RSEとは Power Recycling RSE TAMAやLIGOより制御すべき鏡が1つ増える 高いフィネス DC光が共振→パワーが増す RSE 信号が反共振→帯域が広がる TAMAやLIGOより制御すべき鏡が1つ増える

2周波変調 PRFPMI(4自由度) PR-BRSE(5自由度) キャリア:腕とPRCを共振 f1 :PRCを共振 片方AM キャリア:腕とPRCを共振 f1 :PRCを共振 f2 :PR-SRCを共振 キャリア:腕とPRCを共振 f1 :PRCを共振 f2がSRMの誤差信号を運ぶ

変調周波数とアシンメトリ cosa isina マイケルソンの透過(BP→BP or DP→DP) マイケルソンの反射(BP→DP or DP→BP)

アシンメトリの最適化 72% 68% ls lsの最大化条件

SB周波数の選び方 cosa a p/2 低周波法 日本で開発 高周波法 英米で開発 解が2種類ある!! 例えば9MHz (f1) (低周波法のプローブ) (SRC共振) 180MHz (f2) (高周波法のプローブ) a (SRC反共振) p/2 低周波法 日本で開発 高周波法 英米で開発

15-50MHz 法 9-180MHz法はf2が高周波すぎる →L-の量子効率が下がる 直接の倍数でなく、FSR(5MHz)の3倍(15MHz) と10倍(50MHz)にしてf2の周波数を下げてみた

15-50MHz 法の問題点 cosa a 9MHz with Δl=40cm 15MHz with Δl=1.5m アシンメトリが大きくなる 50MHz withΔl=1.5m 180MHz withΔl=40cm a DPにほぼもれない (BP→DP:0.7%) DPにかなりもれる (BP→DP:40%) ls信号が相殺して減ってしまう

15-50MHz 法の長所短所 f2の周波数が低くなった ~L-をRFで取得するときの難点が解消 アシンメトリが大きくなった ~モードマッチングが大変 ~周波数雑音/強度雑音の問題 ls信号が小さくなりそうである ~およそ4割減 (計算結果は後ほど)

15-35MHz 法 cosa a 15MHz with Δl=24cm 9MHz with Δl=40cm (SRC共振) 180MHz withΔl=40cm a (SRC反共振) f2が運ぶlsの量は同じ(最適化済み) f1はほぼDPにもれず、lsの相殺がない アシンメトリも小さい f2の周波数も低い

FINESSEで計算した誤差信号の量(A.U.) 取得ポート BP(PO) DP BP PO 15-50MHz 2370 152 0.044 0.018 0.166 15-35MHz (8760) 265 0.050 0.281 9-180MHz (7140) 261 0.064 0.273 全体的に15-50MHz法は信号取得効率が低い (特にls)

各方法の比較 f2がf1の 整数倍 f1とf2が何かの 公倍数 高周波法 9-180MHz法 f2の周波数が 高い 15-50MHz法 アシンメトリ大きい ls信号小さい 低周波法 3倍波復調法 PRと共存しない 15-35MHz法 どれも問題ない! ちなみに分離比(信号取得マトリクス)はどうだろうか?

信号取得マトリクス (FINESSEで計算) どれも似たような感じだが、 この中のどれが問題なのだろうか 15-50MHz法

ショットノイズリミテッドフィードバックノイズ 15-50MHz法 1次のコントリビューション: l-のshot noiseがミラーをl-に動かし、それが0.00125倍だけL-に入る (動かす量は制御系に依存する)

ショットノイズリミテッドフィードバックノイズ 15-50MHz法 1次のコントリビューション: l-のshot noiseがミラーをl-に動かし、それが0.00125倍だけL-に入る (動かす量は制御系に依存する:G/1+G) 2次のコントリビューション: l+/lsのshot noiseがミラーを動かし、0.257or1.285倍だけl-に入る そしてその雑音がl-を動かし、それが0.00125倍されてL-に入る (動かす量は制御系に依存:1/1+G)

Double Demodulation ショットノイズ L- (DP) FINESSEの結果 k 信号 ELO × Esig 152 雑音 ELO × Evac ? 比 Evac/Esig=shot noise l+ (BP) FINESSEの結果 k 信号 DDM Signal 0.166 雑音 Etotal× Evac ? 比 = slp shot noise ? 各ポートの各電場量を求めればEvacがFINESSEで どれくらいになって現れるかが分かる (求め方は省略)

Double Demodulation ショットノイズ L- (DP) FINESSEの結果 k 信号 ELO × Esig 152 雑音 ELO × Evac ? 比 Evac/Esig=shot noise l+ (BP) FINESSEの結果 k 信号 DDM Signal 0.166 雑音 Etotal× Evac ? 比 = slp shot noise さらにヘテロダインショットノイズやPOミラーから 入る真空場の影響も考慮する (詳細は省略)

フィードバックノイズスペクトル(1) 制御のUGFを10Hzにした場合 (UGF付近でf -2のサーボを仮定) 15-50MHz法だとlsが感度を悪化させる

フィードバックノイズスペクトル(2) 制御のUGFを10Hzにした場合 (UGF付近でf -2のサーボを仮定) 15-35MHz法だと感度に影響はない

フィードバックノイズスペクトル(3) 制御のUGFを50Hzにした場合 (UGF付近でf -2のサーボを仮定) 15-50MHz法だともう全部だめ

フィードバックノイズスペクトル(4) 制御のUGFを50Hzにした場合 (UGF付近でf -2のサーボを仮定) 15-35MHz法でもl-は感度を悪化させる(l+とlsは50Hzでも大丈夫)

結論 15-35MHz法は以下の点で優れている (1)f2の周波数が低い (2)制御信号の取得効率がよい (3)アシンメトリが小さい (4)他の信号も感度に影響が出ることがないくらいは 分離されている(UGF=10Hzとして) LCGTでは15-35MHz法を採用すべきである

残っている課題 周波数/強度雑音とアシンメトリの関係はどんなものか ロックアクイジションとマトリクスの関係はどうか 周波数雑音などとマトリクスの関係はどうか RFでL-を取得する場合、35MHzで問題ないか

15-50MHz法でlsもDPで取ると… ←UGF=10Hz UGF=50Hz →