原子核物理学 第6講 原子核の殻構造.

Slides:



Advertisements
Similar presentations
物理化学 福井工業大学 工学部 環境生命化学科 原 道寛. 物理化学: 1 章原子の内部 (メニュー) 1-1. 光の性質と原子のスペクトル 1-2. ボーアの水素原子モデル 1-3. 電子の二重性:波動力学 1-4. 水素原子の構造 1-5. 多電子原子の構造 1-6.
Advertisements

化学概論 第5回 GO⇒41⇒GO を押してください 33 / 80.
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛
原子核物理学 第3講 原子核の存在範囲と崩壊様式
電磁気学C Electromagnetics C 7/27講義分 点電荷による電磁波の放射 山田 博仁.
エキゾチックな原子核の魔法数とパイ中間子の 知られざる関係を発見
物理化学(メニュー) 0-1. 有効数字 0-2. 物理量と単位 0-3. 原子と原子量 0-4. 元素の周期表 0-5.
実習B. ガンマ線を測定してみよう 原子核・ハドロン研究室 永江 知文 新山 雅之 足立 智.
電子物性第1 第5回 ー 原子の軌道 ー 電子物性第1スライド5-1 目次 2 はじめに 3 場所の関数φ 4 波動方程式の意味
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
α α 励起エネルギー α α p3/2 p3/2 α α 12C 13B 12Be 8He α α α
金箔にα線を照射して 通過するα線の軌跡を調べた ラザフォードの実験 ほとんどのα線は通過 小さい確率ながら跳ね返ったり、
W e l c o m ! いい天気♪ W e l c o m ! 腹減った・・・ 暑い~ 夏だね Hey~!! 暇だ。 急げ~!!
Fe Ag Au C O 陽子と中性子:原子核内でバランスよく存在する Q : Biって中性子の方が多くね? 安定な原子核の例 陽子だけだと
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛
山崎祐司(神戸大) 粒子の物質中でのふるまい.
クラスター変分法による 超新星爆発用 核物質状態方程式の作成
オルソポジトロニウムの 寿命測定によるQEDの実験的検証
中性子過剰核での N = 8 魔法数の破れと一粒子描像
Ⅰ 孤立イオンの磁気的性質 1.電子の磁気モーメント 2.イオン(原子)の磁気モーメント 反磁性磁化率、Hund結合、スピン・軌道相互作用
埼玉大学大学院理工学研究科 物理機能系専攻 物理学コース 06MP111 吉竹 利織
to Scattering of Unstable Nuclei
原子核物理学 第1講 原子核の発見.
原子核物理学 第4講 原子核の液滴模型.
不安定核における殻進化と エキゾチックな核構造
質量数130領域の原子核のシッフモーメントおよびEDM
Dissociative Recombination of HeH+ at Large Center-of-Mass Energies
大規模殻模型計算による 原子核構造研究の展開
原子核物理学 第8講 核力.
黒体輻射とプランクの輻射式 1. プランクの輻射式  2. エネルギー量子 プランクの定数(作用量子)h 3. 光量子 4. 固体の比熱.
前期量子論 1.電子の理解 電子の電荷、比電荷の測定 2.原子模型 長岡モデルとラザフォードの実験 3.ボーアの理論 量子化条件と対応原理
埼玉大学 大学院理工学研究科 物理機能系専攻 物理学コース 11MP109 佐藤加奈恵
QMDを用いた10Be+12C反応の解析 平田雄一 (2001年北海道大学大学院原子核理論研究室博士課程修了
Azimuthal distribution (方位角分布)
前回の講義で水素原子からのスペクトルは飛び飛びの「線スペクトル」
電磁気学C Electromagnetics C 7/17講義分 点電荷による電磁波の放射 山田 博仁.
原子核物理学 第2講 原子核の電荷密度分布.
原子核の質量 B (束縛エネルギー) 束縛エネルギー *束縛エネルギーが大きいほど安定(質量が軽い)
理研RIBFにおける 中性子過剰Ne同位体の核半径に関する研究
量子力学の復習(水素原子の波動関数) 光の吸収と放出(ラビ振動)
Charmonium Production in Pb-Pb Interactions at 158 GeV/c per Nucleon
ILC実験における ヒッグス・ポータル模型での ヒッグス事象に関する測定精度の評価
2.4 Continuum transitions Inelastic processes
2重井戸型ポテンシャルに捕捉された 冷却原子気体の非平衡初期分布緩和過程に対する非平衡Thermo Field Dynamics
チャネル結合AMDによる sd殻Ξハイパー核の研究
電磁気学Ⅱ Electromagnetics Ⅱ 8/11講義分 点電荷による電磁波の放射 山田 博仁.
学年   名列    名前 物理化学 第1章5 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
第6回講義 前回の復習 ☆三次元井戸型ポテンシャル c a b 直交座標→極座標 運動エネルギーの演算子.
原子核物理学 第5講 原子核の振動と回転.
目次 1. 原子における弱い相互作用 2. 原子核のアナポールモーメント 3. アナポールモーメントから何がわかるか?
原子核の殻構造の相対論的記述 n n n σ ω n σ ω n 柴田研究室 石倉 徹也 1.Introduction n n
卒業論文発表 中性子ハロー核14Beの分解反応 物理学科4年 中村研究室所属   小原雅子.
ストレンジネスで探る原子核 -ハイパー核の世界-
中性子過剰F同位体における αクラスター相関と N=20魔法数の破れ
半経験的質量公式 (Bethe-Weizacker 質量公式: 液滴模型) 体積エネルギー: 表面エネルギー: クーロン・エネルギー:
プラスチックシンチレータを用いた 原子炉ニュートリノ検出器の開発 2010/12/04 長岡技術科学大学 第39回日本物理学会新潟支部例会
原子核物理学 第9講 二重ベータ崩壊.
学年   名列    名前 物理化学 第1章5 Ver. 2.0 福井工業大学 原 道寛 HARA2005.
α decay of nucleus and Gamow penetration factor ~原子核のα崩壊とGamowの透過因子~
原子核物理学 第7講 殻模型.
2・1・2水素のスペクトル線 ボーアの振動数条件の導入 ライマン系列、バルマー系列、パッシェン系列.
課題研究 P4 原子核とハドロンの物理 (理論)延與 佳子 原子核理論研究室 5号館514号室(x3857)
研究紹介:山形大学物理学科 宇宙物理研究グループ 柴田研究室
(K-,K+)反応によるΞハイパー核の生成スペクトル
現実的核力を用いた4Heの励起と電弱遷移強度分布の解析
重心系エネルギー200GeVでの金金衝突におけるPHENIX検出器による低質量ベクトル中間子の測定
甲南大学 理工学部物理学科 宇宙粒子研究室 学籍番号 氏名 上田武典
荷電粒子の物質中でのエネルギー損失と飛程
60Co線源を用いたγ線分光 ―角相関と偏光の測定―
軽い原子核の3粒子状態 N = 11 核 一粒子エネルギー と モノポール a大阪電気通信大学 b東京工業大学
Presentation transcript:

原子核物理学 第6講 原子核の殻構造

殻構造を示唆するデータ 魔法数 結合エネルギー 液滴模型に基づいた質量公式からのずれ 中性子分離エネルギー 第1励起状態( 2+ 状態 )の励起エネルギー 電気四重極モーメント 元素の存在比 中性子吸収断面積 放射壊変系列の終点                   核子の1粒子ポテンシャルへ

1.結合エネルギー 原子核の結合エネルギー 実験値-理論値(質量公式)  実験値-理論値(質量公式) 上図  N が等しい原子核を線で結ぶ 下図  Z が等しい原子核を線で結ぶ 魔法数の近傍で大きな値になる ⇒ 液滴模型の予言より,実際の原子核は,より強く結合している

2.中性子分離エネルギー 質量数が等しい中で結合エネルギーが最大の原子核 中性子数が増加するに伴って減少するが,魔法数の直後で急に減少 中性子の1粒子状態があり,殻構造をなしていると考えられる 魔法数の直後では,閉じた殻の外の1粒子状態に中性子が入る

核子放出に対して安定な,奇数個の中性子をもつ全ての原子核   陽子数が等しい原子核を線で結ぶ 魔法数をはさんで,分離エネルギーは急激に減少

3.2+状態の励起エネルギー 原子核の基底状態と第1励起状態とのエネルギー差は, 原子核の励起のしやすさを示す尺度 左図は Z = 14, 16 の原子核 : 34Si と 36S が N = 20 の魔法数 右図は N = 60, 62 の原子核 : 110,112Sn が Z = 50 の魔法数

4.電気四重極モーメント 電気四重極モーメントは球対称からのずれ(四重極変形)の尺度 閉殻をなす核子の集まりは球対称         閉殻をなす核子の集まりは球対称   Z = 奇数,N = 偶数の原子核 横軸には Z をとる   Z = 偶数,N = 奇数の原子核 横軸には N をとる 魔法数の近傍では 0,魔法数の間で大きな値をとる

5.元素の存在比 鉄より原子番号が大きい元素のほとんどは,超新星爆発の際に, r-process (急速な中性子捕獲とβ崩壊)でつくられる 中性子数が魔法数の中性子過剰核が多くつくられ,その後,β崩壊によって安定な同位体へと変化していく

核子の1粒子ポテンシャル 原子核の殻構造が示唆すること 原子核には,核子が占める1粒子軌道がある 1粒子軌道は1粒子 Hamiltonian の固有状態として得られる 1粒子 Hamiltonian は運動エネルギーとポテンシャルからなる 核子は,エネルギーが低い1粒子軌道から順に占有していくと考えられる    どのようなポテンシャルを用いたら,魔法数が説明できるか?           簡単なポテンシャルから考えてみる

簡単な中心力ポテンシャル 1粒子状態の固有値方程式 1粒子ポテンシャルとして,次の3種類の中心力ポテンシャルを考える 調和振動子ポテンシャル : 解析的に解が得られる 井戸型ポテンシャル : 有限の深さをもつ Woods-Saxon ポテンシャル : 原子核の電荷密度分布と同じ形

1粒子状態の量子数 演算子 : 1粒子 Hamiltonian と可換で,互いに可換 量子数 :    は動径波動関数のノード数(0 点の個数)

1粒子 Hamiltonian のエネルギー固有値 右図の左から順に,1粒子エネルギーの縮退が解けていく 右端は,Woods-Saxon ポテンシャルの場合の1粒子軌道 量子数 占有できる核子の数 エネルギーが低い状態から全て占有したときの核子の数     1粒子エネルギーの大きなギャップがあるところが魔法数に対応する 小さいほうから3つの魔法数(2, 8, 20)は再現できるが,それより大きい魔法数は現れない

スピン-軌道相互作用 Meyer,Jensen はスピン-軌道相互作用を提案 1粒子状態の固有値方程式 1粒子状態の量子数 は の z 成分         は保存しない スピン-軌道相互作用           の効果(右図)

中心力ポテンシャル スピン-軌道ポテンシャル       原子核の表面付近にピークをもつ

魔法数の再現 スピン-軌道相互作用により の縮退が解ける 軌道のエネルギーが 大きく下がり魔法数が再現できる Z = 82 の魔法数の上          の縮退が解ける         軌道のエネルギーが 大きく下がり魔法数が再現できる    Z = 82 の魔法数の上  まで閉殻になると Z = 114 寿命の長い超重元素 Z = 114 は新しい魔法数?

β安定線における1粒子エネルギー