雲解像モデルCReSSを用いた ヤマセ時の低層雲の構造解析

Slides:



Advertisements
Similar presentations
2012 年 7 月黒潮続流域集中観測 モデル感度実験 防災科学技術研究所 飯塚 聡 2012 年 12 月 17 日:東北大 学.
Advertisements

宇宙開発事業団 (NASDA) が開発した、環境観測技術衛星「みど りⅡ」 (ADEOS- Ⅱ ) 搭載の高性能マイクロ波放射計 (AMSR) による オホーツク海の流氷 ( 海氷 ) 画像。左図は 2003 年 1 月 18 日の夜間 (20 時半頃 ) に取得されたデータによる擬似カラー合成画像。
ヤマセ海域の SST 変動と 海洋内部構造の関係 ー2011年の事例解析ー 理工学部 地球環境学科 気象学研究室 4 年 08 S 4025 佐々木 実紀.
偏光ライダーとラジオゾンデに よる大気境界層に関する研究 交通電子機械工学専攻 99317 中島 大輔 平成12年度 修士論文発表会.
CMIP5 気候モデルにおける ヤマセの将来変化: 海面水温変化パターンとの関係 気象研究所 気候研究部 遠藤洋和 第 11 回ヤマセ研究会 1.
富士山に発生する笠雲の発生と 気象学的考察 日本大学大学院 地球情報数理科学専攻 M1 清水 崇博.
リモートセンシング工 学 2007 年 1 月 11 日 森広研 M1 本田慎也. 第 11 章 気象レーダーによる観 測 雲、雨、風など 気象災害 → 特に台風、集中豪雨、竜巻、 ウインドシアー 大気の激しい撹乱現象をレーダーで 観測し防災に役立てることが重要.
DS3 ~Down-Scaling Simulation System 8 DS3 ~Down-Scaling Simulation System   ・ global/meso data Initial & lateral boundary.
JRA-55再解析データの 領域ダウンスケーリングの取り組み
2.温暖化・大気組成変化相互作用モデル開発 温暖化-雲・エアロゾル・放射フィードバック精密評価
富士山笠雲の発生時における大気成層の季節的特徴
島田照久(1) 沢田雅洋(2) 余偉明(2) 川村宏(1)
数値気象モデルCReSSの計算結果と 観測結果の比較および検討
シーロメーターによる 海洋上低層雲、混合層の観測
A④_05 (チーム4:雲解像モデリング) 「雲解像モデルの高度化と その全球モデル高精度化への利用」 ”Cloud Modeling and Typhoon Research” 研究代表者:坪木和久 (名古屋大学 地球水循環研究センター) 平成23年度研究成果報告会 2012年2月28日(火曜日)
いもち病感染危険度予測へ向けた 観測・モデル研究
(Down Scaling Simulation System)
力学的ダウンスケールによる2003年東北冷夏の アンサンブル予報実験
成層圏突然昇温の 再現実験に向けて 佐伯 拓郎 神戸大学 理学部 地球惑星科学科 4 回生 地球および惑星大気科学研究室.
ステップガーデンを有する建物と その周辺市街地の熱環境実測
2.温暖化・大気組成変化相互作用モデル開発 温暖化-雲・エアロゾル・放射フィードバック精密評価
永井晴康、都築克紀(原研)、植田洋匡(京大防災研)
研究テーマ A④ 「雲解像モデルの高度化と その全球モデル高精度化への利用」
A④_05 (チーム4:雲解像モデリング) 「雲解像モデルの高度化と その全球モデル高精度化への利用」
惑星大気大循環モデル DCPAM を用いた 地球大気に関する数値実験
*大気の鉛直構造 *太陽放射の季節・緯度変化 *放射エネルギー収支・輸送 *地球の平均的大気循環
いまさら何ができるのか?何をやらねばならないのか?
A④ (チーム名:雲解像モデリング) 「雲解像モデルの高度化と その全球モデル高精度化への利用」
CMIP5マルチ気候モデルにおける ヤマセに関連する大規模大気循環の 再現性と将来変化(その2)
A④ (チーム名:雲解像モデリング) 「雲解像モデルの高度化と その全球モデル高精度化への利用」
水の災害について学ぶ 国土交通省 北海道開発局 事業振興部 防災課.
1km格子で再現された2003年・2004年7月の気温場 気温場 降水分布の比較 沢田雅洋 岩崎俊樹 (東北大学) Miyagi Pref.
2016.3/10 ヤマセ研究会 2013年5月13日の仙台山形の 気温差について 東北大学流体地球物理学講座 修士1年 岩場遊.
2013年7月のヤマセについて 仙台管区気象台 須田卓夫 昨年のまとめ(赤字は研究会後の調査)
東北地域のヤマセと冬季モンスーンの 先進的ダウンスケール研究
全球の海霧の将来変化 気象研究所気候研究部 川合秀明、 神代剛、 遠藤洋和、 荒川理 第12回ヤマセ研究会 2016年3月10日
西スマトラ山岳域周辺の 気候学的な水蒸気輸送日変化
ヤマセによる冷夏をターゲットにした アンサンブルダウンスケール予報実験
YT2003 論文紹介 荻原弘尭.
ヤマセ時の気象庁メソモデルの日射量予測と 太陽光発電への応用 ~東北地方編~
A④ (チーム名:雲解像モデリング) 「雲解像モデルの高度化と その全球モデル高精度化への利用」
2009年秋の北極海ラジオゾンデ観測によって観測された 大気の順圧不安定とメソ渦列
海上下層雲のパラメタリゼーション及び、海上下層雲と高気圧の関係
レーザーシーロメーターによる 大気境界層エアロゾル及び 低層雲の動態に関する研究
気候モデルのダウンスケーリングデータにおける ヤマセの再現性と将来変化
菅野洋光 (農研機構東北農業研究センター) 渡部雅浩 (東京大学大気海洋研究所)
Johnson et al., 1999 (Journal of Climate)
集合住宅団地における棟間気流性状および 外壁面対流熱伝達率の実測
CMIP3/CMIP5気候モデルにおける ヤマセに関連する大規模大気循環の再現性 ~モデル解像度による違い~
傾圧不安定の直感的理解(2) ー低気圧軸の西傾の重要性ー
ヤマセ時に津軽海峡で発生する強風 島田照久(1) 川村宏(1) 沢田雅洋(2) 余偉明(2)
CMIP5気候モデルにおける ヤマセの将来変化
気候モデルのダウンスケーリングデータにおけるヤマセの再現性と将来変化2
梅雨前線に伴う沖縄島を通過した 線状降水システムの構造の変化
夏の中高緯度海上には、なぜ下層雲が多いのか?
2015 年5 月下旬のインドの熱波について 報道発表資料平成27 年6 月2 日気 象 庁
竜巻状渦を伴う準定常的なスーパーセルの再現に成功
潮流によって形成される海底境界層の不安定とその混合効果
MIROC5による将来のヤマセの再現性について(2)
ラジオゾンデで観測された 千島列島周辺の 激しいSST勾配が駆動する大気循環
2006 年 11 月 24 日 構造形成学特論Ⅱ (核形成ゼミ) 小高正嗣
北極振動の増幅と転調は 何故20世紀末に生じたか? Why was Arctic Oscillation amplified and Modulated at the end of the 20th century? 地球環境気候学研究室 鈴木 はるか 513M228 立花 義裕, 山崎 孝治,
全球モデルにおける中緯度下層雲の鉛直構造の解析
ヤマセ海域のSST変動と 海洋内部構造の関係 ー2011年の事例解析ー
400MHz帯ウィンドプロファイラとCOBRAで観測された台風0418号の鉛直構造
地球環境気候学研究室 谷口 佳於里 指導教員:立花義裕 教授
夏季日本における前線帯の変動と その天候への影響
A④_05 (チーム名:雲解像モデリング) 「雲解像モデルの高度化と その全球モデル高精度化への利用」
1km格子で再現された2003年7月の気温の誤差評価
K2地球システム統合モデル 成層圏拡張の進捗について
Presentation transcript:

雲解像モデルCReSSを用いた ヤマセ時の低層雲の構造解析 復興へ頑張ろう!みやぎ 雲解像モデルCReSSを用いた ヤマセ時の低層雲の構造解析 *吉岡真由美1・片桐秀一郎1・早坂忠裕1 ・坪木和久2・榊原篤志3 1.東北大学大気海洋変動観測研究センター 2.名古屋大学地球水循環研究センター 3.(株)中電シーティーアイ 第9回ヤマセ研究会, 2014年3月10日(月)- 11日(火), 東北農業研究センター, 盛岡, 岩手

はじめに 雲解像モデルは、背が低い低層雲や、静かな層状性の雲とその事例の再現への利用は少ない。 本研究では、これまで雲解像モデルを用いた検証事例が少ない低層雲を対象とした再現実験を行い、雲物理量を衛星観測で得られる診断量(MODISデータセット)と比較し、分布、構造を検証する。 「雲解像モデルCReSSを用いた夏季北西太平洋域の低層雲の再現実験」(2013年3月のヤマセ研究会)で、事例として2011年7月末に観測されたヤマセ時の雲の再現実験の結果(解像度1km,400m)を報告。 本報告では、再現された低層雲の構造、特に鉛直分布に注目して行った結果を示す。

日本域天気概況 オホーツク高気圧がゆっくり東進(28日から31日) 梅雨前線に伴う低気圧が35N付近を通 →三陸沖南東風の持続 地上天気図(気象庁提供) MTSAT可視画像(高知大提供)

雲解像モデルと実験の設定 雲解像モデル CReSS ver.3.4.1 with MSTRANX (並列版) 水平解像度 400m (1000m 実験は略) 水平格子数 X:1795 × Y:1539 鉛直解像度 下層2000m まで50m、それ以上は漸増で平均約80m 鉛直格子数 103 積分時間 118800秒 (33時間) 投影図法 ランベルト図法(20N,40Nを基準緯度) 雲物理過程 冷たい雨のバルク法 放射過程 MSTRNX (10分毎) 乱流過程 乱流運動エネルギーを考慮した1.5次のクロージャ 地表面・海洋過程 1次元熱伝導、1次元拡散モデル 初期値・境界値 気象庁MSM5㎞解像度予報値 地形・土地利用 実地形を用いる。土地利用は考慮せず 初期時刻 2011年7月29日 15UTC

MODIS可視反射輝度

33時間目の結果:地上気圧、地上風、高度25mの気温、高度525mの雲水混合比 ロール状対流 セル状対流

33時間目の結果:地上気圧、地上風、高度25mの気温、高度875mの雲水混合比 水平高解像度化で広域に広がった分布が再現 (セル状対流)

400 m 高度1525m LCW(g/m2) 水雲 水平分布はほぼ再現 水+氷雲

鉛直方向の構造の分布はどうなっているか? 結果: 水平分布の再現性 2011年7月末に観測されたヤマセ時の雲の再現実験では、 解像度1km,400mの計算を実施し、高解像度化で表現が改善され、400mでほぼ低層に広がる雲が再現されていることを確認 下層雲が水雲(雲水+雨)で構成されていたことを確認 鉛直積算量(LWP)はMODISデータセットと比較してほぼ同程度 が示された。 鉛直方向の構造の分布はどうなっているか? 雲の高さ(雲頂輝度温度)を衛星観測と比較

(1) (2) z z qk > qk-1 qk1 qk+1 < qk Tk1 qk1 qk1 < qcrit qcrit 10-6(kg/kg) q_crit は今回、10^-6 [kg/kg] にしている。ちょっと小さめ。カラーで見るときに設定してある1000倍したのだと 0.001のあたり

水+氷雲 水雲 輝度温度 (推定) 400 m W E 295K 280K 270K 295K

W E W E 西側領域では上空(1500m)北風、東側領域では上空南風

W E 雲頂の閾値10-6(kg/kg)は適切 ほぼ1kmより低い雲、水雲、上空に逆転層がある。今回採用した閾値も適切そうだ。

W E

W 278K 295K 280K 270K 295K

まとめ 雲解像モデルCReSSを用いて高解像度(400m)で再現した、2011年7月末の北西太平洋ヤマセの低層雲について、構造を衛星データセット(MODIS)と比較した。 水平分布に関してはほぼ再現 気流場に沿った全体的な水雲のパターン(風の場) 雲水量(LCW)の分布の一致(400m解像度) 鉛直分布について、 シミュレーション結果の雲水量を用いた雲頂判定の閾値は適切。中立成層のほぼ上端に雲頂が分布。 衛星との雲頂輝度温度の頻度分布を比較では、計算領域およびヤマセの低層雲領域全体的に高温(10K近く)のずれ。⇒ヤマセの雲が低めに再現、もしくは雲頂での冷却が弱い