高性能コンクリート (講義ノート) コンクリート工学研究室 岩城 一郎.

Slides:



Advertisements
Similar presentations
塩害 コンクリート工学研究室 岩城 一郎. 塩害とは?  劣化要因:塩化物イオン  劣化現象:コンクリート中の鋼材の腐 食が塩化物イオンにより促進され,コ ンクリートのひび割れやはく離,鋼材 の断面減少を引き起こす劣化現象  劣化指標:鋼材位置における塩化物イ オン濃度.
Advertisements

「設計論」 というほどのものではないが・・・ コンクリート工学研究室 岩城 一郎. 設計とは? (広辞苑) せっ‐けい【設計】 (plan; design) ある目的を具体化する作業.製作・工事 などに当り,工費・敷地・材料および構 造上の諸点などの計画を立て図面その他 の方式で明示すること.「ビルの.
フェロニッケルスラグ骨材を用いた コンクリートの設計施工指針 ・ 銅スラグ細骨材を用いた コンクリートの設計施工指針 の概要
蒸気養生を行なった高炉セメントコンクリートのスケーリング評価に関する検討
土木学会 舗装工学委員会 舗装材料小委員会 アスファルト分科会 報告書目次 【担当】 1. バインダの種類と性状
配合設計 コンクリート工学研究室 岩城 一郎.
アルカリ骨材反応 (アルカリシリカ反応) コンクリート工学研究室 岩城 一郎.
RC構造の破壊形態 コンクリート工学研究室 岩城 一郎 このサイバーキャンパスをご覧の皆さん,こんにちは.
せん断力を受ける 鉄筋コンクリート部材 コンクリート工学研究室 岩城 一郎.
07.建築材料の耐久性(1).
化学的侵食 コンクリート工学研究室 岩城 一郎.
社会基盤保全工学 ガイダンス コンクリート工学研究室 岩城 一郎.
硬化コンクリートの性質 コンクリート工学研究室 岩城 一郎.
構造材料学の 開講にあたって コンクリート工学研究室 岩城 一郎.
高流動コンクリート コンクリート工学研究室 岩城 一郎.
コンクリート構造物のひび割れ コンクリート工学研究室 岩城一郎.
アルカリ骨材反応 コンクリート工学研究室 岩城 一郎.
塩害 コンクリート工学研究室 岩城 一郎.
凍害 コンクリート工学研究室 岩城 一郎.
化学的侵食 コンクリート工学研究室 岩城 一郎.
配合とは?配合設計とは? コンクリート工学研究室 岩城 一郎.
コンクリートと鉄筋の性質 コンクリート工学研究室 岩城一郎.
凍害 コンクリート工学研究室 岩城 一郎.
コンクリートの強度 (構造材料学の復習も兼ねて)
高性能コンクリート コンクリート工学研究室 岩城 一郎.
① (a) 早強 (b) 低熱 (c) 中庸熱 (d) 耐硫酸塩 ② (a) 早強 (b) 耐硫酸塩 (c) 低熱 (d) 中庸熱
アルカリ骨材反応 コンクリート工学研究室 岩城 一郎.
問題13(耐久性)    コンクリートに劣化現象に関する次の記述のうち、正しいものはどれか。
使用限界状態 コンクリート工学研究室 岩城 一郎.
コンクリートの強度 コンクリート工学研究室 岩城 一郎.
配合設計 コンクリート工学研究室 岩城 一郎.
鉄筋コンクリート構造の材料(1) ・図解「建築の構造と構法」     91~93ページ ・必携「建築資料」   材料:78~79ページ.
硬化コンクリートの性質 弾性係数,収縮・クリープ
コンクリートとは? セメントとは? コンクリート工学研究室 岩城 一郎.
塩害促進条件の違いがRC床版の材料劣化に及ぼす影響
塩害 コンクリート工学研究室 岩城 一郎.
アルカリ骨材反応 (アルカリシリカ反応) コンクリート工学研究室 岩城 一郎.
構造材料学の開講にあたって コンクリート工学研究室 岩城 一郎.
硬化コンクリートの性質 コンクリート工学研究室 岩城 一郎.
セメントについて コンクリート工学研究室 岩城 一郎.
化学的侵食 コンクリート工学研究室 岩城一郎.
社会基盤保全工学 ガイダンス コンクリート工学研究室 岩城 一郎.
電気抵抗を用いた養生終了時期判定手法の提案
プレストレストコンクリートに関するまとめ
中性化 コンクリート工学研究室 岩城一郎.
中性化 コンクリート工学研究室 岩城一郎.
プレストレストコンクリートに関する復習 プレストレストコンクリート(prestressed concrete:PC)構造とは?
鉄筋コンクリートの成立条件・特徴 コンクリート工学研究室 岩城一郎.
強いコンクリート構造物を作るためには? -材料と構造の関係-
コンクリート構造物の設計法 コンクリート工学研究室 岩城 一郎.
疲労 コンクリート工学研究室 岩城 一郎.
コンクリートとは? セメントとは? コンクリート工学研究室 岩城一郎.
高性能コンクリート コンクリート工学研究室 岩城 一郎.
コンクリートの応力-ひずみ関係のモデル化
配合設計 コンクリート工学研究室 岩城一郎.
高流動コンクリート(補足) コンクリート工学研究室 岩城 一郎.
鉄筋コンクリートとは? 鉄筋とコンクリートという異なる2種類の材料が双方の短所を補うことにより,一体となって外力に抵抗するもの.
曲げを受ける鉄筋コンクリート部材 (状態III)
フレッシュコンクリートの性質 コンクリート工学研究室 岩城 一郎.
鉄筋コンクリート構造の材料(1) ・図解「建築の構造と構法」     91~93ページ ・必携「建築資料」   材料:78~79ページ.
私たちの暮らしを支えるコンクリート 強いコンクリート構造物を作るためには?
鉄筋コンクリートはりの 曲げ耐力の算出 コンクリート工学研究室 岩城一郎.
アルカリ骨材反応 コンクリート工学研究室 岩城 一郎.
各種コンクリート コンクリート工学研究室 岩城 一郎.
塩害 コンクリート工学研究室 岩城 一郎.
問題13(フレッシュコンクリート)  フレッシュコンクリートに関する次の記述のうち、正しいものはどれか。
2.9 混合物の低温時のクリープおよび破壊挙動における改質バインダの影響
エンジニアリングデザイン教育 コンクリート製体重計の作製 愛知工業大学 都市環境学科.
問14(第1回):鉄筋コンクリートに関する次の記述のうち、正しいものの数を数字で答えよ. a
混和材料について コンクリート工学研究室 岩城一郎.
Presentation transcript:

高性能コンクリート (講義ノート) コンクリート工学研究室 岩城 一郎

高性能コンクリート 1990年代初頭:我が国では自己充てん性を有するコンクリートを意味する用語として用いられていた.By Okamura 同時期に欧米では一般に水セメント比W/Cまたは水結合材比W/Bを25-30%程度にまで小さくした高強度コンクリートあるいは高耐久コンクリートを意味する.

高性能コンクリートの分類 高強度コンクリート(High-strength Concrete)   一般のコンクリートに比べ,強度の高いコンクリート.   土木では設計基準強度f’ck=60MPa以上,建築ではf’ck=42MPa以上,超高強度コンクリート:f’ck=100MPa以上 高耐久コンクリート(High-durability Concrete)   一般のコンクリートに比べ,耐久性の高いコンクリート(定義があいまい:おかれる環境ごとに劣化要因が異なる)   例 非常に厳しい環境においても所要の耐用年数(50年)を満足するコンクリート,一般あるいは厳しい環境において,耐用年数100年を満足するようなコンクリート 高流動コンクリート(High-fluidity Concrete)   材料分離抵抗性を損なうことなく,流動性を著しく高めたコンクリート.このうち,締固めが不要なコンクリートについては自己充てん性を有するコンクリート(Self-compacting Concrete)と呼ぶ.

高強度コンクリート(High-strength Concrete) 低水結合材比→細孔組織の緻密化(f’c-C/W関係は直線) 反応性微粉末混和材の使用(シリカフューム:比表面積200,000cm2/g,粉末度の高い高炉スラグ微粉末:8000cm2/g>普通ポルトランドセメント:3000cm2/g)→細孔組織の緻密化と遷移帯の改質(水酸化カルシウムの消費) 遷移帯(Transition Zone):セメントペーストと骨材界面に存在する厚さ20μm程度の脆弱な層,水酸化カルシウムの結晶が多く存在,コンクリートの力学的性質や物質移動性に大きな影響を及ぼす.(ブリーディングの影響を大きく受ける場合,界面での性質はさらに悪化) 高性能(AE)減水剤の使用→フレッシュコンクリートの品質の向上 良質な骨材の使用→骨材強度>セメントペースト強度

普通強度コンクリートと 高強度コンクリートとの配合の違い 普通強度コンクリートの一例(寒冷地仕様)   W/C=50%,AE剤使用,スランプ8cm,空気量4.5%,f’ck=30N/mm2 高強度コンクリートの一例   W/B=25%,B=C+SF,SF/(C+SF)=10%,高性能AE減水剤使用,スランプ8cm or スランプフロー60cm,空気量4.5%,f’ck=80N/mm2

高強度コンクリートの用途および問題点 用途 ・ 部材の軽量化と部材寸法の縮小,高強度化≒高耐久化 →信頼性の向上,LCCの低減 ・ 具体的には圧縮力が卓越する部材(柱,PC部材) 問題点 ・ コスト ・ 引張強度(および弾性係数)は圧縮強度の増加割合ほど期待できない. ・ 例 示方書式 ftk=0.23f’ck2/3,f’ck=30MPa→ftk=2.22MPa,f’ck=60MPa(2倍)→3.53MPa(1.6倍),圧縮強度に対する引張強度に比1/13.5→1/17 ・ 破壊が脆性的であり,変形性能に乏しい(ポストピーク). ・ 温度ひび割れおよび収縮ひび割れの危険性 大 ・ 耐火性:火災の際に爆裂し易い.コンクリート中の水蒸気圧の上昇 ・ 高濃度の硫酸環境:普通コンクリートよりも侵食速度 大(例 下水溝構造物のうち特に腐食性環境の厳しいところ,強酸性の温泉地域)

高耐久コンクリート 基本的には高強度コンクリート=高耐久コンクリート=高性能コンクリートと考えられていた.   →水和熱および自己収縮・乾燥収縮に起因したひび割れ等の要因により,必ずしも成り立たない. 高耐久コンクリートのポイント ・ 低水セメント比とすることによる組織の緻密化と混和材(GGBS,SF,FA)の使用による,物質移動性の制御および遷移帯の改質(水酸化カルシウムの消費) ・ 施工段階におけるひび割れの制御

高耐久コンクリート(その2) 塩害に対して ・ W/Cの低下→細孔組織の緻密化 ・ 施工段階におけるひび割れの制御(使用材料の吟味:セメント,膨張材等+施工方法:養生等) ・ 高炉スラグ微粉末の使用による塩分の固定化(フリーデル氏塩:Cl-とC3Aの反応により3CaO・Al2O3・CaCl2・10H2Oが生成)の促進→耐久性の向上に寄与 中性化に対して ・ 施工段階におけるひび割れの制御 ・ 高炉スラグ微粉末を混和した場合,(少なくとも促進試験結果では)中性化の進行が速くなるため注意(鉄筋腐食との相関は明らかではない.)

高耐久コンクリート(その3) 凍害に対して ・ W/C45%以下,空気量4-6%(塩分環境下では5%以上)とすればほぼ満足 ・ 低W/C,低空気量の場合,しばらくは良好な耐凍害性を示すものの,突然,急激に低下する.(標準的な300サイクルの試験方法では判定できない.)特に乾燥の影響を受けた場合,その傾向が強い                            →高強度であっても,AEコンクリートとすることが不可欠. ASRに対して ・ 混和材(スラグ,FA,SF)の添加が有効 ・ 水,アルカリ,反応性骨材のどれかを制御 ・ 単に水セメント比を下げただけではASR対策とはならない. 化学的侵食に対して ・ 高濃度の硫酸が作用する場合,低水セメント比のコンクリートほど侵食作用が激しい. ・ スラグの混和による効果は確認(著しい耐久性の向上は認められない):コンクリートによる対策は現在のところ困難