Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 統計学 第2週 10/01 (月) 担当:鈴木智也. 2 前回のポイント 「記述統計」と「推測統計」。 データ自体の規則性を記述するのが 「記述統計」、データを生み出した背 景を推測するのが「推測統計」である。 推測統計は記述統計に基づくので、ま ずは記述統計から学ぶ。 以下、データの観測値をX.

Similar presentations


Presentation on theme: "1 統計学 第2週 10/01 (月) 担当:鈴木智也. 2 前回のポイント 「記述統計」と「推測統計」。 データ自体の規則性を記述するのが 「記述統計」、データを生み出した背 景を推測するのが「推測統計」である。 推測統計は記述統計に基づくので、ま ずは記述統計から学ぶ。 以下、データの観測値をX."— Presentation transcript:

1 1 統計学 第2週 10/01 (月) 担当:鈴木智也

2 2 前回のポイント 「記述統計」と「推測統計」。 データ自体の規則性を記述するのが 「記述統計」、データを生み出した背 景を推測するのが「推測統計」である。 推測統計は記述統計に基づくので、ま ずは記述統計から学ぶ。 以下、データの観測値をX 1 、X 2 ・・・と表す。

3 3 講義の流れ 第1部:記述統計 ← 今はここ 第2部:確率論 第3部:推測統計 第1部の構成 一変数の規則性を記述する ← こ こ! 規則性を視覚化する 二変数の関係を記述する

4 4 今日のトピック 一変数ついて、規則性を数量的に把握。 三つの基本的な指標 平均 ← データの代表値(の一つ) 分散 ← 標準偏差を出すために導出 標準偏差 ← データの散らばり具合

5 5 平均(Mean) ☆平均(小学校の算数で履修済み) X のデータから、 m 個の観測値につい て、大体どれ位の値になるかの指標。

6 6 分散(Variance) ☆分散 X i が概ね平均値からどのくらい離れて いるかを表す指標。(散らばり具合を 記述) Q:なぜ二乗しているのかを考えてみよ う。

7 7 標準偏差( Standard Deviation ) ☆標準偏差 ← 誤差の平均 これも散らばり具合を表す指標。 注:分散は二乗を取って計算している ので、元々の単位とは異なる。 ⇒分散の平方根を取って「標準化」する ことで、平均値と比較可能になる。

8 8 応用①:加重平均 単純平均 加重平均(次の例題を参照のこと)

9 9 例題(加重平均の使い方) 食堂が二つの定食を出しており、価格 と一日あたりの売上げは以下の通りで ある。 A定食 500円 70食 / 一日 B定食 600円 30食 / 一日 一食あたりの平均売上げはいくらにな るのか計算せよ。

10 10 誤った解答の代表例 A定食とB定食の価格の単純平均 ⇒単純平均では、売上げ全体について、 A定食の貢献度:過小評価 B定食の貢献度:過大評価 (A定食とB定食の売上げ比率は7: 3。)

11 11 正しい解答 A定食とB定食の売上比率が 70% 、 30% なので、ウェイトを 0.7 、 0.3 に設定。 別解としては、全食の売上金額を合計 し、売上件数 100 で割る方法もある。

12 12 加重平均の適用例 TOPIX(東証平均株価) ⇒上場株式数で加重して平均を取る。 (注)日経平均株価は単純平均 消費者物価指数 ⇒物価を品目別に加重して平均を取る。 ファイナンス理論:期待収益率の計算 ⇒収益率を確率で加重して平均を取る。

13 13 加重平均した場合の分散 もしも平均を加重平均で算出するなら、 分散も同じように加重して算出。 これはファイナンスで「リスク」を計 算する際に多用する(詳細は『金融 論』等で)。

14 14 応用②:変動係数 例:先進国Aと途上国B、どちらが貧 富の差が激しいのか? 貧富の差は所得の散らばり具合を二国 で比べればよい。 ⇒分散や標準偏差を比較すれば、平均所 得の高い先進国の方が、単位が大きい 分、所得のちらばりが大きくなってし まうので、修正が必要である。

15 15 変動係数(続き) ⇒平均所得から概ねどのくらいの範囲に 散らばっているかを比較可能にしたい。 ⇒標準偏差を平均値で割ってやる。

16 16 応用③:標準化変量 ある観測値がデータ全体の中でどのく らいの位置にあるのかは、平均値と標 準偏差を用いて、「標準化」した「変 量」で測る。 標準化変量 (注)「標準化」の手順は統計学では頻 出!

17 17 標準化変量の適用 学力テストの偏差値は、平均点を50 にして、標準化変量を 10 倍して算出し ている。 異なるデータ間で学力を比較できる方 法の一つ。

18 18 付論 平均値以外の代表値の指標としては、 次の二つがよく用いられる。 (1)中位数(Median) データを大きさの順に並べたとき、 ちょうど中央に位置する値。 (2)最頻値(Mode) 最も多くのデータが集中している値。


Download ppt "1 統計学 第2週 10/01 (月) 担当:鈴木智也. 2 前回のポイント 「記述統計」と「推測統計」。 データ自体の規則性を記述するのが 「記述統計」、データを生み出した背 景を推測するのが「推測統計」である。 推測統計は記述統計に基づくので、ま ずは記述統計から学ぶ。 以下、データの観測値をX."

Similar presentations


Ads by Google