Download presentation
Presentation is loading. Please wait.
1
水平板を用いた消波機構における指向性 アクチュエータの境界要素法による性能解析
0804 水平板を用いた消波機構における指向性 アクチュエータの境界要素法による性能解析 Analysis of directional wave actuator in active water-wave control system using horizontal plates based on boundary element method ○ 山本 龍彦(長岡技科大) 小林 泰秀(長岡技科大)
2
背景 性能改善 消波機構の用途:防波堤 外乱 外乱 反射 反射 透過 外乱 水平板タイプ 堤防タイプ (潜堤)
・消波機構の用途として防波堤が考えられる. ・堤防タイプがあり,外乱を100%反射することができるが左と右の水の循環に問題がある ・一方外乱を100%反射することはできないが,左と右の水の循環を考え,環境に配慮した堤防として,水平板タイプが提案されている ・水平板タイプの性能改善を目的に,鉛直方向に振動させるタイプが提案されている. <質問> ・防波堤に設置する場合に水平板の大きさはどのくらいになると考えられるか?また巨大になる場合に,それを動かすことは現実的に可能か? 外乱 鉛直方向に振動する水平板に対してロバスト制御系を設計し,外乱抑制を行う制御系を構成した. [廣田,2010]
3
背景 従来研究 外乱 実験では示されているが,解析では示されていない. そのため,今回は解析を行う. Reference sensor
指向性アクチュエータを用いて外乱抑制を行う 制御系を構成した. [吉岡,2011] 外乱 Control actuator1 Control actuator2 指向性アクチュエータの効果 ・港湾内の水が港湾の形状によって共振することが知られている. ・従来研究として,この港湾内の共振を抑えるために,アクチュエータを用いた消波機構の導入を考えている. ・外乱をリファレンスセンサで測定し,鉛直方向に振動するアクチュエータ1つで消波する.右側(下流域)ではこれにより消波できる しかし,アクチュエータは左側(上流側)にも波を発生させてしまい,この波がリファレンスセンサで検出されてしまう. この問題を解決するために,制御用アクチュエータ2を導入に,リファレンスセンサに直接伝播する波を相殺するように駆動させることが提案されている. ・ここでは,このアクチュエータを指向性アクチュエータと呼び,制御用アクチュエータで生成した波がリファレンスセンサで検出されるまでの時間を延ばすことができる. ・この効果は,周波数応答結果で確認することができ,この時 制御用アクチュエータ1からリファレンスセンサまでの伝達関数である,フィードバックパス伝達関数に位相遅れが生じる. ・この研究は実験的に示されており,解析的には示されていない.そのため,本研究では解析的に検証する. 制御用アクチュエータからリファレンスセンサまでの距離が長い時に,良い閉ループ性能が得られる. 周波数応答 制御用アクチュエータ1からリファレンスセンサまでの伝達関数 (フィードバックパス伝達関数)に位相遅れが生じる. 実験では示されているが,解析では示されていない. そのため,今回は解析を行う.
4
解析方法 境界要素法 有限要素法 境界要素法 本研究では を使用する. 特徴 特徴 今回の研究では
2次元水槽を用いて,水中の障害物における波の反射率を境界要素法で解析した. [R. Shin,et al, 2005] 2次元で非線形な非定常波の自由水面を有限要素法で解析した. [G.X.Wu & R.Eatock Taylor ,1994] 3次元タンク内のスロッシング波を有限要素法で解析した. [G.X.Wu, et al. 1998] 特徴 ・ 計算領域の境界から解析を行う. ・ 境界のみを解析するので,有限要素法よりも解析時間が短い. ・ 境界の情報だけを知りたい時に 使用される. ・解析方法として,有限要素法と境界要素法が考えられる. ・有限要素法では,非定常波の自由水面やスロッシング波の解析に使用されている. ・FEMの特徴として,計算領域を三角形要素に分割して解析を行い,3次元の複雑な構造物を対象とする時に使用される. ・境界要素法では,水中の障害物における反射率の解析に使用されている. ・BEMの特徴として,計算領域の境界から解析を行い,境界の情報だけを知りたい時に使用される. 今回の研究では, ・水面(境界)の情報だけを知りたい ・解析時間を短くしたい この2点から,境界要素法を用いて解析を行う. <質問> ・スロッシング波の解析は,境界要素法でも可能か? ・スロッシング波の消波には,導入できる可能性はあるのか? ・ 計算領域を三角形要素に分割して解析を行う. ・ 3次元の複雑な構造物における流体の解析に使用される. 今回の研究では ・水面(境界)の情報だけを知りたい. ・解析時間を短くしたい. 本研究では 境界要素法 を使用する.
5
目的 指向性アクチュエータの効果を境界要素法で検証する. 1.実験と解析による周波数応答結果を比較する.
実験と解析,無指向性と指向性アクチュエータの比較を行う. ・目的として,指向性アクチュエータの効果を境界要素法で検証する ・BEMの解析と実験結果の比較を行う.具体的には両者の周波数応答を示し,ゲイン線図と位相線図で比較する. ・指向性アクチュエータの効果を解析的に検証する.具体的には,フィードバックパス伝達関数の位相遅れの増加分を検証する. 2.指向性アクチュエータの効果を解析的に検証する. 指向性アクチュエータによるフィードバックパス伝達関数の位相遅れの 増加分を検証する.
6
実験装置の概要 ・港湾内の共振現象を模擬するために,左側のアクチュエータで外乱を生成し,右端のエラーセンサで消波することを考えます. ・外乱をリファレンスセンサで測定し,この2つの制御用アクチュエータで消波を行います. ・この時,水槽の左側を上流方向,右側を下流方向とします. ・制御用アクチュエータの駆動方法は2種類あり,制御用アクチュエータ1のみを駆動させる場合をCase Aとします. ・Case Aに対して,リファレンスセンサに直接伝播する波を相殺するために,むだ時間を設定した制御用アクチュエータ2を設定しめす.これがCase Bになります. ・ここで制御用アクチュエータ2で設定するむだ時間は,波の速度から計算することができます. 音波の場合では速度が周波数に依存しないため,全周波数帯域で指向性のある波を生成できます. しかし,水の波の場合では速度が周波数に依存してしまうため,1つの周波数に対して指向性のある波を生成することができます. ・本研究ではこの周波数を3次共振周波数と設定します. <質問> むだ時間を設定する時に,3次共振周波数を選んだ理由はなぜか? 上流方向 下流方向
7
境界要素法による数値解析 境界要素法による数値モデル 要素の幅:ΔS=5として,実験装置を数値モデル化した.
Control actuator1 先ほど説明した実験装置を数値モデル化した結果です. ・水槽の外側・3つのアクチュエータをそれぞれ境界として,設定しました. Disturbance actuator Control actuator2 境界要素法による数値モデル
8
解析モデル ・ラプラス方程式 ・自由表面の設定 ・水槽の水底・壁面,水平板(静止)の境界条件 ・水平板(振動)の境界条件
o x z ・ラプラス方程式 ・自由表面の設定 →エネルギー散逸を考慮した係数αを追加 :速度ポテンシャル ・水槽の水底・壁面,水平板(静止)の境界条件 ・数値モデルの境界条件を設定します. ・境界内の条件をラプラス方程式と仮定します ・自由表面は,エネルギー散逸を考慮したαを設定しました ・水槽の水底・壁面,また静止している水平板の境界条件をこのように設定しました ・水平板(振動)の境界条件 ・速度ポテンシャルと位置zにおける変位の設定 ・周波数応答関数の定義 →水平板の変位から位置xにおける水面の変位まで周波数応答G(x, jω)を定義 周波数応答関数を求めるために, を数値的に求める.
9
アクチュエータの駆動方法 Case A 制御用アクチュエータ1のみを使用する(v(t)=0).
無指向性アクチュエータ 制御用アクチュエータ1のみを使用する(v(t)=0). 制御用アクチュエータ1,2を使用し,任意の周波数で 指向性の波を生成する(v(t)=-u(t-τ)). τはむだ時間であり,3次共振周波数の波の速度Cpと 制御用アクチュエータ間の距離dより求める. τ=d/Cp=0.356[s] Case B 指向性アクチュエータ 全周波数帯域で指向性の波を生成する (v(jω)=-Θ(jω)u(jω), Θ(jω)=exp(-jkLd)). Ldは制御用アクチュエータ1,2間の距離,kは波数であり, 角周波数ωと波の速度C(ω)より求める. k=ω/C(ω) Case C 厳密な指向性アクチュエータ ・CaseCの説明(式などを加える) →実現させることは難しいが,全周波数で単方向波を生成できるアクチュエータを仮想的に考える. ・比較のために(制アク1→壁との距離の2倍)を考慮したCaseA→CaseA2とする ・CaseA2とCaseCが非常に合っていることがわかる.これより,CaseCが制アク1→壁→リファレンスセンサに検出されたことを意味する Case A2 むだ時間を考慮した 無指向性アクチュエータ Case Aにむだ時間(exp(jkl))を加える. kは波数,lは制御用アクチュエータ1からエラーセンサ側の壁までの距離の2倍とする. l=315×2=630 mm Control actuator1 むだ時間 Ref. sensor Case A Wall Case A2
10
周波数応答結果(実験と解析の比較) おおむね一致 Case AよりもCase Bの位相が遅れている 解析結果 実験結果
・実験と解析による周波数応答結果を比較します. ・図の説明:実験結果と解析結果,横軸・縦軸の説明,Case AとBの説明,縦軸の説明(共振周波数) ・実験結果について,2次共振周波数より低周波側ではノイズの影響があるため,解析との比較が難しい ・実験結果について,3次共振周波数より高周波側では細かな波が発生し,共振のピークが確認できない ・そのため,2次と3次共振周波数付近を比較する. ・ゲイン線図では,2次と3次共振周波数が一致していること,この共振周波数付近のゲイン特性が似ていることがわかる ・位相線図では,設定した3次共振周波数付近でCase AよりもCase Bの位相が遅れていることが確認できる <質問> ・2次と3次共振周波数周辺以外で,解析結果は使えないのか? ⇒実験結果から,3次共振周波数より高周波側で,ゲインが小さい周波数が確認できる.解析結果も同様に確認できる これより少ないが確認できる部分もある. Case AよりもCase Bの位相が遅れている 解析結果 実験結果
11
指向性アクチュエータの効果の検証 Case Cについて 位相特性を比較すると, Case A2とCase Cが ほぼ一致している.
位相特性を比較すると, Case A2とCase Cが ほぼ一致している. ・Case A2とCase Cを比較する. ・位相線図に注目すると,両者がほぼ一致している. ・Case Cは,制御用アクチュエータ1からリファレンスセンサに直接伝播するのではなく,壁で反射されてからリファレンスセンサで検出されていることがわかる. Case Cについて Control actuator1 Control actuator2 Ref. sensor Wall
12
指向性アクチュエータの効果の検証 指向性アクチュエータとして利用できる ・CaseBとCを比較する.
・CaseBとCを比較し,2.0Hzまで一致していることがわかる.これより,設定した3次共振周波数付近では指向性の波を生成できていることがわかる. (補足情報) それ以降は,直接上流側へ放射される進行波を相殺できなくなり、CaseCに対して位相が進んだ。 位相が進んだ理由としては,CaseBで直接上流側へ放射される進行波を相殺できなくなったためと考えられる. 指向性アクチュエータとして利用できる
13
結言 1.実験と解析による周波数応答結果を比較した. 2.指向性アクチュエータがフィードバックパス 伝達関数に与える効果を検証した.
実験結果と解析結果を比較し,共振周波数の一部と 共振周波数付近のゲイン特性がおおむね一致した. 2.指向性アクチュエータがフィードバックパス 伝達関数に与える効果を検証した. ・指向性アクチュエータは,むだ時間を設定した周波数付近で厳密な指向性アクチュエータとおおむね一致した. ・指向性アクチュエータを用いることで,フィードバックパス伝達関数における位相遅れが増加する.その増加分は,制御用アクチュエータ1とエラーセンサ側の壁までの距離の2倍に相当する. 以上より,指向性アクチュエータの効果を解析により示した.
Similar presentations
© 2024 slidesplayer.net Inc.
All rights reserved.