の範囲に、 “ 真の値 ” が入っている可能性が約 60% 以上ある事を意味する。 (測定回数 n が増せばこの可能性は増 す。) 平均値 偶然誤差によ るばらつき v i は 測定値と平均値の差 で残差、 また、 σ は、標準誤差( Standard Error, SE ) もしくは、平均値の標準偏差、平均値の平均二乗 誤差と呼ばれる。詳しくは、実験書の p 5 、 19 を参 照のこと。 例えば平均値と誤差が、 117 ± 2 とあれば、 “ 真の値 ” が 119 ~ 115 の間に 入る可能性が、 60% 以上である事を意味している。 偶然誤差(ばらつき)の評価 (精密さ, precision ) 測定値の平均値 ± 標準誤差 σ +σ-σ なお、の範囲に “ 真の値 ” が入る可能性は、 90% 程度 実験書の p5 、 p19 を参照のこと
注意) 標準誤差を用いてわかるのは、あくまでも平均値の周りにどの程度測定値がばらついているかで ある。測定の際には平均値そのものが偏っている可能性にも留意すること。 例えば、目盛がおかしい定規を使って物の長さを測 定 すると何度測ってもおかしな値しか出ない。 これを 系統誤差 と呼ぶ。 系統誤差があると測定回数を増しても、誤差は小さ くならない。そのうえやっかいなことに、見かけ上 測定はう まくいっているように見える。 真値 X 平均値 系統誤差 偶然誤差 (ばらつき) (%) 系統誤差の評価 (正確さ, accuracy ) 幸いなことに、学生実験では真の値がすでに解っていることが多く、系統誤差の大 きさを評価できる。この場合、真の値 X と得られた平均値 の差を真値に対する 百分率で示す事が多く、これを相対誤差もしくは誤差率と呼ぶ。 しかし、 の間に真の値が入らない場合もある。 系統誤差(読み取り誤差、機械の公差)と偶然誤差(標準誤 差)の大きさを良く比較をすること。誤差は値の信頼性を示 すために付けるので、より大きく付けるのが普通。
系統誤差 と 偶然誤差 (ばらつき) 真値 X 平均値 正確だが、精密ではない測定 ≈ 平均値 正確ではないが、精密な測定 偶然誤差(ばらつき) が大きい 系統誤差 は少ない 偶然誤差(ばらつき) は少ない 系統誤差 が大きい 系統誤差 偶然誤差 偶然誤差 ( accidental error もしくは random error ) ⇒ 誤差(標準誤差)で評価 原因: 測定器や人間の五感の変動 など 系統誤差 ( systematic error ) ⇒ 相対誤差(誤差率)で評価 原因: 測定器の調整不足(機械誤差)、個人のくせ(個人誤差、読み取り誤差)、 計算式が間違っている(理論誤差)、など
誤差の有効数字は、途中計算では2桁、最終結果では1桁で十分 (誤)(正) 0.12 ± ± 0.10 ← ( 最初の 0 でない数字が 1 の時は2桁書くことが多い。 ) ± ± ×10 11 ± 0.5×10 10 (12.34 ± 0.05 )× ± 5× ± 誤差の含まれている数字を何桁も書かないこと。 ← 誤差により有効桁がわかる、とも言える。 追加) 測定値の標準偏差と平均値の標準偏差(標準誤差) 測定値の標準偏差平均値の標準偏差(標準誤差) 両方とも、バラつきを評価するために使用する。標準誤差は、測定回数 n が増加す るとともに減少するが、測定値の標準偏差の方は測定回数が増しても誤差は小さく ならない。 本物理実験では、平均値の標準偏差(標準誤差)の方を用います。