2008/9/24 岡山県看護協会一般研修 資料 データ分析の基礎知識 統計的検定編 岡山商科大学商学部 商学科長・教授 田中 潔.

Slides:



Advertisements
Similar presentations
1標本のt検定 3 年 地理生態学研究室 脇海道 卓. t検定とは ・帰無仮説が正しいと仮定した場合に、統 計量が t 分布に従うことを利用する統計学的 検定法の総称である。
Advertisements

統計解析第 11 回 第 15 章 有意性検定. 今日学ぶこと 仮説の設定 – 帰無仮説、対立仮説 検定 – 棄却域、有意水準 – 片側検定、両側検定 過誤 – 第 1 種の過誤、第 2 種の過誤、検出力.
第6回 適合度の検定 問題例1 サイコロを 60 回振って、各目の出た度数は次の通りであった。 目の出方は一様と考えてよいか。 サイコロの目 (i) 観測度数 : 実験値 (O i ) 帰無仮説:サイコロの目は一様に出る =>それぞれの目の出る確率 p.
1 市場調査の手順 1. 問題の設定 2. 調査方法の決定 3. データ収集方法の決定 4. データ収集の実行 5. データ分析と解釈 – データ入力 – データ分析 6. 報告書の作成.
4. 統計的検定 ( ダイジェスト版 ) 保健統計 2014 年度. Ⅰ 仮説検定の考え方 次のような問題を考える。 2014 年のセンター試験、英語の平均点は 119 点であった。 T 高校では 3 年生全員がセンター試験を受験したが、受験生の中から 25 人を選んで調査したところ、その平均点は.
生体情報論演習 - 統計法の実践 第 1 回 京都大学 情報学研究科 杉山麿人.
Wilcoxon の順位和検定 理論生態学研究室 山田 歩. 使用場面 2 標本 離散型分布 連続型分布(母集団が正規分布でない時など 効果的) ただパラメトリックな手法が使える条件がそ ろっている時に、ノンパラメトリックな手法 を用いると検出力(対立仮説が正しいときに 帰無仮説を棄却できる確率)が低下するとい.
統計学入門2 関係を探る方法 講義のまとめ. 今日の話 変数間の関係を探る クロス集計表の検定:独立性の検定 散布図、相関係数 講義のまとめ と キーワード 「統計学入門」後の関連講義・実習 社会調査士.
エクセルと SPSS による データ分析の方法 社会調査法・実習 資料. 仮説の分析に使う代表的なモデ ル 1 クロス表 2 t検定(平均値の差の検定) 3 相関係数.
●母集団と標本 母集団 標本 母数 母平均、母分散 無作為抽出 標本データの分析(記述統計学) 母集団における状態の推測(推測統計学)
Rコマンダーで反復測定ANOVA.
第4章 統計的検定 統計学 2007年度.
第4回 関連2群と一標本t検定 問題例1 6人の高血圧の患者に降圧剤(A薬)を投与し、前後の収縮期血圧 を測定した結果である。
統計的仮説検定の手順と用語の説明 代表的な統計的仮説検定ー標準正規分布を用いた検定、t分布を用いた検定、無相関検定、カイ二乗検定の説明
看護学部 中澤 港 統計学第5回 看護学部 中澤 港
数理統計学(第十回) ノンパラ検定とは?1 浜田知久馬 数理統計学第10回.
第4章補足 分散分析法入門 統計学 2010年度.
      仮説と検定.
様々な仮説検定の場面 ① 1標本の検定 ② 2標本の検定 ③ 3標本以上の検定 ④ 2変数間の関連の強さに関する検定
第7回 独立多群の差の検定 問題例1 出産までの週数によって新生児を3群に分け、新生児期黄疸の
検定 P.137.
スケジュール予定など 9:30-10:20頃 看護研究・データ分析再考 10:30-12:00頃 データ入力段階の留意 昼 食
スケジュール予定など(再掲) 1日目 午前 10:00-11:00頃 統計学の全体像・歴史 11:00-12:00頃 看護研究の2アプローチ
統計的仮説検定 基本的な考え方 母集団における母数(母平均、母比率)に関する仮説の真偽を、得られた標本統計量を用いて判定すること。
4. 統計的検定 保健統計 2009年度.
土木計画学 第5回(11月2日) 調査データの統計処理と分析3 担当:榊原 弘之.
第9回 二標本ノンパラメトリック検定 例1:健常者8人を30分間ジョギングさせ、その前後で血中の
統計的仮説検定の考え方 (1)母集団におけるパラメータに仮説を設定する → 帰無仮説 (2)仮説を前提とした時の、標本統計量の分布を考える
第6章 2つの平均値を比較する 2つの平均値を比較する方法の説明    独立な2群の平均値差の検定   対応のある2群の平均値差の検定.
データ分析の基礎知識 午前:総論編+午後:ノンパラ検定編
確率・統計Ⅱ 第7回.
統計学勉強会 対応のあるt検定 理論生態学研究室 3年 新藤 茜.
臨床統計入門(3) 箕面市立病院小児科  山本威久 平成23年12月13日.
カイ二乗検定の応用 カイ二乗検定はメンデル遺伝の分離比や計数(比率)データの標本(群)の差の検定にも利用できる 自由度
相関と回帰:相関分析 2つの変量それぞれが正規分布にしたがってばらつく量であるとき,両変数の直線的な関係を相関分析する. 例:兄弟の身長
統計学 12/13(木).
ホーエル『初等統計学』 第8章4節~6節 仮説の検定(2)
母分散が既知あるいは大標本の 平均に関する統計的検定
正規性の検定 ● χ2分布を用いる適合度検定 ●コルモゴロフ‐スミノルフ検定
対応のあるデータの時のt検定 重さの測定値(g) 例:
クロス集計とχ2検定 P.144.
母集団と標本調査の関係 母集団 標本抽出 標本 推定 標本調査   (誤差あり)査 全数調査   (誤差なし)査.
土木計画学 第6回(11月9日) 調査データの統計処理と分析4 担当:榊原 弘之.
analysis of survey data 第3回 香川大学経済学部 堀 啓造
社会統計学Ic・統計科学I 第六回 ~仮説検証~
スケジュール予定など 2日目 午後 10:00-11:00頃 統計分析ソフトと 青木・すがやのサイト 11:00-12:00頃 統計的検定法
Excelによる実験計画法演習 小木哲朗.
早稲田大学大学院商学研究科 2016年1月13日 大塚忠義
第2日目第4時限の学習目標 平均値の差の検定について学ぶ。 (1)平均値の差の検定の具体例を知る。
第8回授業(5/29日)の学習目標 検定と推定は、1つの関係式の見方の違いであることを学ぶ。 第3章のWEB宿題の説明
統計学 西 山.
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
統計処理2  t検定・分散分析.
1.母平均の検定:小標本場合 2.母集団平均の差の検定
母分散の検定 母分散の比の検定 カイ2乗分布の応用
早稲田大学大学院商学研究科 2014年12月10日 大塚忠義
確率と統計2009 第12日目(A).
疫学初級者研修  ~2×2表~ 平成12年2月14日(月) 13:00~ 岡山理科大学情報処理センター.
統計的検定   1.検定の考え方 2.母集団平均の検定.
データの型 量的データ 質的データ 数字で表現されるデータ 身長、年収、得点 カテゴリで表現されるデータ 性別、職種、学歴
母分散の検定 母分散の比の検定 カイ2乗分布の応用
第4章 統計的検定 (その2) 統計学 2006年度.
「アルゴリズムとプログラム」 結果を統計的に正しく判断 三学期 第7回 袖高の生徒ってどうよ調査(3)
クロス表分析補遺 。堀 啓造(香川大学経済学部) 2003年5月.
岡山商科大学経営学部商学科 教授 田中 潔(教学部長)
クロス表とχ2検定.
母集団と標本抽出の関係 母集団 標本 母平均μ サイズn 母分散σ2 平均m 母標準偏差σ 分散s2 母比率p 標準偏差s : 比率p :
小標本に関する平均の推定と検定 標本が小さい場合,標本分散から母分散を推定するときの不確実さを加味したt分布を用いて,推定や検定を行う
藤田保健衛生大学医学部 公衆衛生学 柿崎 真沙子
数理統計学  第12回 西 山.
Presentation transcript:

2008/9/24 岡山県看護協会一般研修 資料 データ分析の基礎知識 統計的検定編 岡山商科大学商学部 商学科長・教授 田中 潔

統計手法の中で「検定(Test)」は医療統計でよく使われます。 薬効評価、効果判定のために用いられます 以前は、平均値を比較するパラメトリック手法が用いられましたが、最近ではノンパラメトリック検定が多く用いられています。

仮説検定の考え方を知る

統計的検定はどんなもの ある仮説(○=△)を判定する 判定結果は採択、または棄却の2分法 採択とは「この仮説を積極的に否定しない」 例: この実験結果=160.0 例: 群1の平均=群2の平均 判定結果は採択、または棄却の2分法 採択とは「この仮説を積極的に否定しない」 (厳密には仮説を認めたくないがやむを得ない) 棄却とは「この仮説を積極的に否定する」

看護に代表的な検定 t検定 ある測定データの平均値がある値かどうか 2群の平均は等しいとみなせるか カイ2乗検定 仮説: 測定データの平均値=46.7 2群の平均は等しいとみなせるか 仮説: 群1の平均=群2の平均 カイ2乗検定 クロス表に傾向や関連性があるか 仮説: このクロス表の度数は同じか

(統計的)仮説検定の流れ ある検定手法を選択する(パラでもノンパラでも) 帰無仮説H0:とは 対立仮説H1:とは 否定する(だろう)ための仮説 帰無=無に帰する=否定を期待する 対立仮説H1:とは 帰無仮説以外の結果 H0を否定するだけなので積極的な採択はしない H0:とH1:を対にして用意する 分析データを統計ソフトにかける→有意水準を求める 有意水準の値に応じてH0かH1かを判定する 目的に応じて手法はたくさん存在する

仮説の立て方 1.自分の持っている仮説(作業仮説ともいう)を対立仮説H1とする 2.H1の否定(逆)をH0とする 3.H0は○=△のように等号で作成するのがよい 4.H0:○=△とした時、3種類のH1が考えられる    H1その1: ○>△ 片側検定    H1その2: ○<△ 片側検定    H1その3: ○≠△ 両側検定

仮説の事例 新薬Bは薬Aより効果あることを証明したい H0は等号関係で作成すると良い H1には3つの作り方あり H0: 新薬B=薬A(同じ、効果なし) で決まり! H1には3つの作り方あり ① H1: 新薬B>薬A 効果ある  片側 ② H1: 新薬B<薬A 効果劣る  片側 ③ H1: 新薬B≠薬A 同じでない 両側 「効果ある」なので通常③を採用

仮説H1に方向性があるならば両側検定 関係があるかないか   ない= ある≠   両側検定 正(負)や大小の関係があるかないか   ない= ある>   片側検定 優れている(劣っている)   同じ= <や>   片側検定 同じか否か   同じ= 同じでない≠ 両側検定

H0とH1の例 H0はハッキリと1点で指定するのが普通(点指定) H1は指定された1点以外のすべて(だからはっきりと値が判定できない) ○ H0: 日本人の平均160センチ 平均=160 H1: 160センチではない(何センチかは不明) H0はハッキリと1点で指定するのが普通(点指定) H1は指定された1点以外のすべて(だからはっきりと値が判定できない)          ○ 残り全てがH0 H0

棄却と採択 H0が明らかに成立しないならば棄却 つまりH1を採用 H0は帰無したいがどうしても棄却できない状態のことを採択(=積極的には帰無・棄却しない)という つまりH0を採用する

検定に見る計算と判定 計算: 統計ソフトなどを使用する 判定: 出てくる結果の有意確率か有意水準の値により判定 計算: 統計ソフトなどを使用する 判定: 出てくる結果の有意確率か有意水準の値により判定 有意水準>0.05 有意水準5%以上で採択 0.5%以下ならば棄却された 0.05~0.01  5%有意 * 星1つ 0.01~0.005 1%有意 ** 星2つ 0.005より小 0.5%有意 *** 星3つ

まとめましょう 正規分布を仮定できそうな時 正規分布を仮定できそうでない時 仮説は次に固定すると理解し易い 平均値に関するt検定 正規分布を仮定できそうでない時 ノンパラメトリックな検定法 仮説は次に固定すると理解し易い H0: A=B H1:A≠B(両側検定) 計算は統計ソフトやWebサイトで行う 有意かどうかの判定は有意水準で行う

検定の実際に慣れる

統計ソフトについて 記述統計、グラフなどはエクセルで十分 検定、多変量分析となると専用ソフトが望ましい http://aoki2.si.gunma-u.ac.jp/ 群馬大青木先生のサイトで間に合うことも多い。いつまで続くかは不明 市販ソフトとしては SPSS 高い、施設向き、論文投稿には望ましい。世界的権威ソフト 新規18万円 エクセル統計 4万円、エクセルのアドイン、おおむね使えるが細かな使い勝手はあまり良くない フリーソフト(無料) R 良くできているが上級者でまければ使いにくい!

医療統計向けソフト比較 http://www.kenkyuu.net/comp-soft-01.htmlより引用

2グループの平均値差検定 (通称t検定) 仮説は以下のとおりに立てる H0: 平均1=平均2(2つの平均は同じ) H0: 平均1=平均2(2つの平均は同じ) H1: 平均1≠平均2(同じでない)→両側 注意 H0: 平均1≠平均2(同じでない) H1: 平均1=平均2(2つの平均は同じ) のように逆には立てない H0は等号関係で作ります!

パラメトリック検定 集めたデータが正規分布しそうな場合に適 検定力は強い 平均値と標準偏差に関する検定がおも 2群(実験群と対照群)の平均値差検定 =通称:t検定が有名

サイトで行う2群平均値差の検定(t検定) 次の2群の平均値は同じといえるか 平均 ケース数 標準 偏差 A群 10.0 10 5     平均 ケース数 標準                 偏差 A群  10.0    10    5 B群  10.5    20   15 等分散性 0.002 棄却 2群は同じ分散ではない 平均値差 0.894 採択 平均値は等しい(差ない) 使用サイト http://aoki2.si.gunma-u.ac.jp/Java/StatCalc/dist/StatCalc.html 赤字部分は配布資料に誤りがありました。ここに訂正します。

ノンパラメトリック検定群 正規分布を仮定しない 検定力はパラメトリック検定にやや劣る 頑健な検定法 多いのは、平均値など代表値差の検定が多い クロス表のカイ2乗検定もノンパラ検定法の1つ

パラメトリックvsノンパラ比較表 http://aoki2.si.gunma-u.ac.jp/lecture/Kentei/nonpara.htmlより引用

主な統計的検定法の体系図 (青木サイトより)

クロス表の独立性の検定 通称カイ2乗検定 実はノンパラメトリックな検定手法の1つです 2×2クロス表の精密なカイ2乗検定 http://aoki2.si.gunma-u.ac.jp/JavaScript/FisherExactTest.html R×C表 クロス表入力 通常版 http://aoki2.si.gunma-u.ac.jp/JavaScript/cross.html R×C表 クロス表入力 正確計算版 http://aoki2.si.gunma-u.ac.jp/JavaScript/cross2.html (計算量が多いため通常版で十分) R×C表 素データで入力する版 http://aoki2.si.gunma-u.ac.jp/JavaScript/cross3.html

代表的なノンパラメトリック検定法 対応のない2標本(群)の代表値差 対応のある2標本(群)の代表値差 マンーホイットニのU検定 2標本コルモゴロフースミロノフ検定 ファンデル・ワーデン検定 中央値検定 対応のある2標本(群)の代表値差 ウイルコクソン符号検定 ウイルコクソン符号付順位和検定

対応のあるデータ、ないデータ 対応ありと考えられる場合 同じ人やグループを追跡して測定 対応ないと考えられる場合      1回 2回 3回・・・ Aさん  1.0 1.5 2.0・・・ Bさん  1.2 1.7 2.2・・・ 対応ないと考えられる場合 毎回グループの構成者を取り替えて測定      岡山 東京 大阪 福岡・・・ 人口 生産額 学生数   

対応のないk標本(群)の代表値差 クラスカル・ウォリス検定 中央値検定 対応のあるk標本(群)の代表値差 フリードマン検定

マンーホイットニ検定 2群、対応なし 9個の部品について4個は処置群、残り処置なし群とした。この2つの群の母代表値に差があるかどうか検定しなさい。 処置群の観察値 1.2,1.5,1.8,2.6 処置なし群の観察値 1.3,1.9,2.9,3.1,3.9

有意確率=0.142または0.190 有意確率>0.05なので有意差なし・採択 つまり両群に差は認められない 参考:http://aoki2.si.gunma-u.ac.jp/Java/TwoSamples/dist/TwoSamples.html つまり両群に差は認められない

ウイルコクソン符号検定 2群、対応あり 10 人の被検者について,五段階評価をした。同じ被検者に対して,1 年後にもう一度評価した。その結果を表 に示す。1 年間で母代表値に差があったかどうか検定しなさい      1 2 3 4 5 6 7 8 9 10 最 初 A A C B D A C B D B 1年後 C A E D B B D A E D

Wilcoxson符号検定の結果 正確有意確率=0.180>0.05 → 採択 最初と1年後では有意差ない 正確有意確率=0.180>0.05 → 採択 最初と1年後では有意差ない もしも計量値としてWilcoxsonの符号付順位検定を行ったならば、 漸近有意確率=0.114>0.05 採択 やはり 最初と1年後では差はない 分布計算 http://aoki2.si.gunma-u.ac.jp/CGI-BIN/mpsrtest.html

クラスカルーウォリス検定 3群以上、対応なし 12 匹のラットに 3 種類の餌を与えたときの肝臓の重量は表 1 のようであった。餌の種類により肝臓の重量の平均値に差があるといえるか      SPSS入力 表 1.餌の種類による肝臓の重量 A餌 3.42 3.84 3.96 3.76 B餌 3.17 3.63 3.47 3.44 3.39 C餌 3.64 3.72 3.91

H0: 平均1=平均2=平均3 H1: 3群の平均は同じでない 漸近有意水準0.062>0.005 棄却 結論: 3群の平均は同じではない ただ、有意水準6.2%と5%に近いことにも留意する 参考http://aoki2.si.gunma-u.ac.jp/JavaScript/kw-test.html

フリードマン検定 3群以上、対応あり 表 1 のようなデータがある。4 種の肥料間で収量に差があるか 参考: 行列を入れ替えれば3品種間に差があるかを検定できる 表 1.フリードマン検定が対象とするデータ 肥料  品種   B1   B2   B3   B4  A1 9  17  12  16  A2 1  21  11  A3 7  19  6  9

漸近有意確率0.001<0.005 *** 0.5%有意 肥料4種の平均は等しくない 行列を入れ替えると 漸近有意確率0.004<0.005 エクセル版 http://aoki2.si.gunma-u.ac.jp/lecture/stats-by-excel/vba/html/friedman2.html H0: 4群の平均は等しい H1: 4群の平均は等しくない 漸近有意確率0.001<0.005 *** 0.5%有意 肥料4種の平均は等しくない 行列を入れ替えると H0: 3品種の平均は等しい H1: 等しくない 漸近有意確率0.004<0.005  ***0.5%有意→3品種の平均は異なる 総合的には、肥料、品種いずれも差あり

表の形式は似ていても… 表はクロス表に似ている。しかしクロス表は対応なし、フリードマンは対応ありが大きく異なる。 肥料  品種   B1   B2   B3   B4  A1 9  17  12  16  A2 1  21  11  A3 7  19  6  9 表の形式は似ていても… 表はクロス表に似ている。しかしクロス表は対応なし、フリードマンは対応ありが大きく異なる。 クロス表では行か列はそれぞれ要因。フリードマンでは行か列は標本(ケース)である。

まとめ・チェックリスト □ 統計的検定法の概念 □ 採択と棄却がわかる □ 帰無仮説と対立仮説 H0とH1 □ 統計的検定法の概念 □ 採択と棄却がわかる □ 帰無仮説と対立仮説 H0とH1 □ 計算は統計ソフトで、統計ソフトは色々 □ 時代はパラメトリックからノンパラへ □ ノンパラ検定にはたくさんの手法 □ 代表的ノンパラ検定の用法・読み方

研修講師のメモ 田中 潔(たなかきよし) 略歴: 岡山大、九州大修了の後商大へ勤務。助手、講師、助教授を経て現在教授。2008年より商学科長。 主な科目:情報システム論、情報ネットワーク論他 専門分野:計算機統計学、マーケティング 連絡先 岡山商科大学 〒700-8601(番号で届く) tanaka@po.osu.ac.jp http://www.osu.ac.jp/~tanaka 検索エンジン 「岡山商科大学 田中潔」 大学電話 086-252-0642 大学FAX 086-255-6947

研修後に相談があれば アポイントはメールtanaka@po.osu.ac.jpが最適。その他電話FAXは086-284-7726(自宅)だが捕まらないならごめんなさい データ分析相談は随時応ずるが、エクセルに素データを入力しておくのが望ましい また希望する仮説も事前に固まっている方がスムーズに進む。 遠方の場合メールだけで指導する場合もある

より大規模な分析体制 施設からの応需制度として大学では産学官連携センター受付による受託研究や共同研究などの制度もあり。 おおむね1件1年50万円程度から受託し、担当者も指定可。 例:「アミューズメントにおけるマーケティング研究」パチンコ業受託2007、08年