経営システム工学入門実験 ロジスティクス 第3回 経営システム工学入門実験 ロジスティクス 第3回 2018/7/16 担当教員 椎名孝之・蓮池 隆 桑 海侠 担当助教 佐藤哲也 TA: 椎名研究室修士2年、4年生
ロジスティクスシステム 材料の調達から、生産、最終ユーザーへの製品の配達、廃棄/回収までのトータルなものの流れの計画・管理・制御 工場立地 スケジューリング 生産計画 施設配置計画 需要予測 在庫管理 生産 原材料 輸送 需要 地点 輸送 配送拠点 配送 工場内物流 配送計画 輸送計画 調達物流 販売物流 材料の調達から、生産、最終ユーザーへの製品の配達、廃棄/回収までのトータルなものの流れの計画・管理・制御 静脈物流
「経営システム工学入門実験A」 ロジスティクスの狙い 「経営システム工学入門実験A」 ロジスティクスの狙い ロジスティクス、サプライチェーンマネジメントの側面を「体感」 ロジスティクス・システムの計画・管理に役立つ技法を「体感」 在庫管理 シミュレーション 最適化(数理計画)
数理計画問題 線形問題 1個100円、5個であれば500円のような比例関係のもとで、必要な条件を考慮しながら最も良い答えを求める問題 1個100円、5個であれば500円のような比例関係のもとで、必要な条件を考慮しながら最も良い答えを求める問題 非線形問題 大量購入による値引きや交通量の増加による渋滞など、購入量や交通量に比例しないため、非線形と呼ばれる
多様な解き方 図式解法: グラフを用いて解く 表計算ソフト: ソルバー 数理モデリング言語: AMPLやLingo,Lindo
仕入れ問題 ある家具店は卒業シーズンに備え、社会向けの陳列コーナーを設けようとしている。仕入れる予定の商品はベッドと洋服タンスの2種類である。これらの2つの商品を100m2の陳列スペースに陳列しようとしている。また、今回の仕入れに利用できる資金は240万円が限度である。 陳列スペースに関して、ベッド1台につき、陳列スペースは2m2であり、これに対し、洋服タンスの陳列スペースは1m2である。また、ベッドの仕入れ価格は3万円が必要であることに対し、洋服タンスは6万円の資金が必要とする。 ベッドが1台販売によって、得られる利益は2万円、洋服タンスの販売による利益は3万円がもらえる。 上記の条件の下で、この店の店長はベッド何台、洋服タンス何台仕入れすれば、店の利益が一番多いでしょうか?
数理計画問題(最適化問題)の定式化 変数(variables)の定義 なにが制御可能か。なにを動かして最適化を達成しようとするのか。 目的関数(objective function)の定義 計画をどう評価するのか。評価値を大きくしたいのか、小さくしたいのか。 制約条件(constraints)の定義 どのような制約条件があるのか。
線形計画問題(LP) (Linear Programming) 目的関数、制約条件がすべて線形関数からなる 変数は、原則として非負の実数(連続変数) 最大化 z =Σ j=1,...,ncj xj 制約条件 Σ j=1,...,naij xj = bi , i=1,...,m xj ≧0 , j=1,...,n
仕入れ問題の定式化 変数: ベッドの仕入れ台数x、洋服タンスの仕入れ台数y 目的関数 利益最大化 制約条件 陳列スペースの制約: 陳列スペースの制約: 資金の制約: 非負制約: x>=0、 y>=0
輸送問題(Transportation Problem)
輸送問題 供給量 必要量 18 10 9 25 12 15 11 処理場A 6 工場X 1 5 4 処理場B 5 6 工場Y 3 処理場C 9 5 6 工場Y 25 3 処理場C 6 12 8 工場Z 7 2 15 処理場D 10 11 枝上に輸送距離
輸送問題 (Transportation Problem) 変数(決めたいこと) 処理場iから工場jへの輸送量xij (≧0) 制約条件 1)処理場iからの輸送量は処理場iの供給量以下 2)工場jへの輸送量は、工場jの必要量以上 目的関数(評価尺度;狙い) 延輸送距離を最小化
輸送問題の数式による表現 変数 xij =処理場iから工場jへの輸送量≧0 XAX
輸送問題の数式による表現 目的関数 最小化 6xAX+xAY+ 5xAZ+ 4xBX+5xBY+6xBZ+3xCX+6xCY+8xCZ+7xDX +2xDY+10xDZ (延輸送距離)
輸送問題の数式による表現 制約条件
ソルバー使用上の留意点(1) 「変化させるセル」(変数セル)はなるべく一箇所にまとめる 複数の部分に分かれている場合はコンマ区切り 式をコピーする場合は、セルの相対参照と絶対参照を使いわける(セルの絶対参照切替はF4) 「ソルバーのパラメータ」で、「制約のない変数を非負数にする」にチェックし、「解決方法の選択」は「シンプレックスLP」を選択する
ソルバー使用上の留意点(2) 整数条件・0-1条件のある場合 整数条件や0-1条件が必要なときは、制約条件の指定の中で、変化させるセルを「int」(=整数)または「bin」(0-1)に指定する さらに、「ソルバーのパラメータ」の「オプション」で、「整数制約条件を使用した解決」のなかの「整数制約条件を無視する」の前のチェックをはずす
輸送問題の数式による表現 データ 処理場iの供給量ai, 工場jの必要量bj 処理場iから工場jへの距離cij 目的関数 最小化 ΣiΣjcijxij (延輸送距離) 制約条件 Σjxij ≦ai (処理場iから送り出される量≦処理場iの供給量) Σixij ≧bj ( 工場jへ輸送される量 ≧工場jの必要量)
パレット回送問題 郵便局X 〒 郵便局Y 郵便局Z 郵便局A 郵便局B 郵便局C 郵便局D 140 120 270 250 70 50 出超局(都会) 入超局(田舎) +100 +250 +150 10 20 90 30 40 130 160 100 60 -180 -90 -120 -110
パレット回送問題のデータ
パレット回送問題の言葉による表現 流れの特徴: 都会から地方へのものの流れが、地方から都会へのものの流れより多い 流れの特徴: 都会から地方へのものの流れが、地方から都会へのものの流れより多い 特徴によって生じる問題: ほっておくと、都市のパレットあるいはケース(以下、パレット)がなくなる 対策: 余っているところから、足りないところに効率よく送る
コンピュータに問題を解かせる コンピュータに輸送問題を解かせるためには、解法が必要 解法については、「基礎OR」などで学習 数理計画を解くためのパッケージ ①EXCELのソルバー(小規模な問題) ②商用数理計画パッケージ CPLEX、Gurobi、XpressーMP、...
今日の演習・宿題 「仕入れ問題」、「輸送問題」をソルバーで解く (実験後半) さまざまな問題を(数理計画で定式化して)ソルバーで解く (問題1~問題8)、余裕がある場合、問題9~15を解いてみる 宿題:問題16、17。宿題は、レポートとして提出。 締切7月23日(月)9時 提出箇所:実験室レポートボックス