ICトレーナーの構成 7セグメントLED ブレッドボード XOR OR AND NAND 電源端子 スイッチ端子 LED端子 データLED

Slides:



Advertisements
Similar presentations
論理回路 第3回 今日の内容 前回の課題の解説 論理関数の基礎 – 論理関数とは? – 真理値表と論理式 – 基本的な論理関数.
Advertisements

論理回路 第 11 回
論理回路 第 4 回 TkGate 実習 - 組み合わせ論理回路 38 号館 4 階 N-411 内線 5459
論理回路 第 12 回 TkGate 実習 - 順序回路 38 号館 4 階 N-411 内線 5459
第7章 計算の機構.
第3回 論理式と論理代数 本講義のホームページ:
第12回 順序回路の解析方法 瀬戸 順序回路から,以下を導き、解析を行えるようにする タイムチャート 状態遷移関数・出力関数 状態遷移表
ハードウェア記述言語による 論理回路設計とFPGAへの実装 1
電気電子工学実験ⅢA コンピュータ応用 (2週目) 補足資料.
全加算回路 A, Bはそれぞれ0または1をとるとする。 下位桁からの繰り上がりをC1とする。(0または1)
電子回路設計 電子制御設計製図Ⅰ  2009年11月17日 Ⅳ限目.
第2回 真理値表,基本ゲート, 組合せ回路の設計
テープ(メモリ)と状態で何をするか決める
コンピュータ系実験Ⅲ 「ワンチップマイコンの応用」 第1週目
ロジック回路学習ボード MLCTB-BASE 説明書 NAND 7400 NOT 7404 AND 7408 OR 7432
第10回 Dフリップフロップ ディジタル回路で特に重要な D-FF 仕組みを理解する タイミング図を読み書きできるようにする 瀬戸
補数 n:桁数、b:基数 bの補数 bn-x 253(10進数)の10の補数は、 =747
PIC制御による赤外線障害物 自動回避走行車
デジタル回路(続き) コンピュータ(ハードウェアを中心に)
基本情報技術概論(第3回) 埼玉大学 理工学研究科 堀山 貴史
7. 順序回路 五島 正裕.
2005年11月2日(木) 計算機工学論A 修士1年 No, 堀江準.
KiCadで IoT電子工作を はじめよう 補足資料
ハードウェア記述言語による 論理回路設計とFPGAへの実装 2
第8回  論理ゲートの中身と性質 論理ゲートについて,以下を理解する 内部構成 遅延時間,消費エネルギー 電圧・電流特性 瀬戸.
6. 順序回路の基礎 五島 正裕.
第6回 よく使われる組合せ回路 瀬戸 重要な組合せ回路を理解し、設計できるようにする 7セグディスプレイ用デコーダ 加算回路・減算回路
[2]オシロスコープ 目的 オシロスコープの使い方をマスターする オシロスコープの校正と波形観測(実1,2)
アルゴリズムとチューリングマシン 「もの」(商品)としてのコンピュータ 「こと」(思想)としてのコンピュータ アルゴリズム
電界効果トランジスタの動作原理 トランジスタを用いた回路のバイアス
計算機工学特論A   テキスト内容 5.6.
電子回路設計 電子制御設計製図Ⅰ  2010年11月30日 Ⅲ限目.
高速剰余算アルゴリズムとそのハードウェア実装についての研究
メカトロニクス 12/8 OPアンプ回路 メカトロニクス 12/8.
電界効果トランジスタの動作原理 トランジスタを用いた回路のバイアス
1.コンピュータと情報処理 p.18 第1章第1節 2.コンピュータの動作のしくみ CPUと論理回路
2. 論理ゲート と ブール代数 五島 正裕.
コンピュータ系実験Ⅲ 「ワンチップマイコンの応用」 第3週目
ディジタル回路 2. ブール代数 と 論理ゲート 五島 正裕.
第5回 今日の目標 §1.6 論理演算と論理回路 ブール代数の形式が使える 命題と論理関数の関係を示せる
ディジタル回路 6. 順序回路の実現 五島 正裕.
電子回路Ⅰ 第7回(2008/12/1) 小信号動作量 トランジスタ回路の接地形式.
第6回 6/4/2011 状態遷移回路とシングルサイクルCPU設計
ICトレーナーの構成 7セグメントLED ブレッドボード XOR OR AND NAND 電源端子 スイッチ端子 LED端子 データLED
ディジタル回路 5. ロジックの構成 五島 正裕.
ICトレーナーの構成 7セグメントLED ブレッドボード XOR OR AND NAND 電源端子 スイッチ端子 LED端子 データLED
3. 論理ゲート の 実現 五島 正裕.
9. 演算回路 五島 正裕.
コンピュータアーキテクチャ 第 7 回.
コンピュータアーキテクチャ 第 7 回.
ブレッド・ボードを用いた回路の作成 気温データ・ロガー編.
FETの等価回路 トランジスタのバイアス回路(復習)
信号伝搬時間の電源電圧依存性の制御 による超伝導単一磁束量子回路の 動作余裕度の改善
2009年8月17日,新潟大学 「情報」と「ものづくり」 の実践教育2 佐藤亮一,下保敏和.
第11回 よく使われる順序回路 複数のFFを接続した回路を解析する際の考え方を学ぶ カウンタ回路の仕組みを理解し,設計できるようにする 瀬戸.
ディジタル回路 9. 演算回路 五島 正裕.
基本情報技術概論(第2回) 埼玉大学 理工学研究科 堀山 貴史
論理回路 第12回
  第3章 論理回路  コンピュータでは,データを2進数の0と1で表現している.この2つの値,すなわち,2値で扱われるデータを論理データという.論理データの計算・判断・記憶は論理回路により実現される.  コンピュータのハードウェアは,基本的に論理回路で作られている。              論理積回路.
  MESHプログラミング (Ver /09/14)  MESHという小型コンピュータセットを使って、IoT(モノのインターネット)は何か考えながら、いろいろなものを作っていきましょう。 MESHのしくみや使い方を詳しく知りたい人は読んでね。 内容: 0. MESHの前に、IoTって何?
計算機工学特論 スライド 電気電子工学専攻 修士1年 弓仲研究室 河西良介
8. 順序回路の実現 五島 正裕.
エレクトロニクスII 第12回増幅回路(1) 佐藤勝昭.
メカトロニクス 12/15 デジタル回路 メカトロニクス 12/15.
Ibaraki Univ. Dept of Electrical & Electronic Eng.
9. 演算回路 五島 正裕.
PIC16F88を使った 周波数カウンタ 2007年12月15日 北裏@日暮里
ブレッド・ボードを用いた回路の作成 気温データ・ロガー編.
信号伝搬時間の電源電圧依存性の制御 による超伝導単一磁束量子回路の 動作余裕度の改善
2009年8月18日,新潟大学 「情報」と「ものづくり」 の実践教育3 下保敏和,佐藤亮一.
Presentation transcript:

ICトレーナーの構成 7セグメントLED ブレッドボード XOR OR AND NAND 電源端子 スイッチ端子 LED端子 データLED 電源/切り替えスイッチ プッシュスイッチ クロック発振器 データスイッチ

ジャンプワイヤによる接続 切り替えスイッチは常に乾電池側にしておく 接続するときは電源スイッチは切っておく 電源GND端子とブレッドボードの青の線に沿った穴を接続 電源+5V端子とブレッドボードの赤の線に沿った穴を接続

NAND ICのピンの配置 NANDゲートが4つ組み込まれている Vcc 4B 4A 4Y 3B 3A 3Y 14 13 12 11 10 9 8 1 2 3 4 5 6 7 1A 1B 1Y 2A 2B 2Y GND

ブレッドボード内で回路がつながっている穴 赤または青の同じ線に沿った穴(□,□) 同じ数字のA-E, F-J(□,□)

NAND ICと電源端子の接続 7番ピンと電源GND端子を接続 14番ピンと電源+5V端子を接続 2 1

NANDゲートとスイッチ端子の接続 1番ピンとD0端子を接続 2番ピンとD1端子を接続 D0 D1 1 2

NANDゲートとLED端子の接続 3番ピンとI0端子を接続 I0

NANDゲートの動作 NANDゲートに接続されている端子 NANDの真理値表と,真理値と実験ボードの対応 D0 D1 I0 1 1 回路 1 1 回路 電圧低 電圧高 スイッチ OFF(手前) ON(奥) LED 消灯 点灯

NANDゲートの実際の動作 SW0がON(1)でSW1がOFF(0)のとき,LED0は点灯(1)

NAND演算でNOT演算を作る NAND演算とNOT演算の関係 NANDで作ったNOTのMIL記法による表現 D0 I0

NANDゲートでNOTゲートを作る D1端子への接続を外し,1番ピンにつなぎかえる 1番ピンと2番ピンが接続される

NANDでAND, OR, XORを作る NAND演算とAND演算,OR演算の関係 (発展) NAND演算とXOR演算の関係 各演算の真理値表は教科書162ページの表7.6参照 (発展) NAND演算とXOR演算の関係 4つのNANDゲートでXORゲートを作ることができる(□の部分は1つのゲートの出力を2回使う)

AND, OR, XORのICのピンの配置 各ゲートが4つ組み込まれている(図はANDの例) Vcc 4B 4A 4Y 3B 3A 3Y 14 13 12 11 10 9 8 1 2 3 4 5 6 7 1A 1B 1Y 2A 2B 2Y GND

1ビット半加算器の作成 ANDゲートとXORゲートを1つずつ使用 1ビット半加算器のMIL記法表現と真理値表 MIL記法と実験ボードの対応 入力x, y : スイッチ端子D0, D1 出力s, cout : LED端子I0, I1

1ビット全加算器の作成 使用するゲート数はAND 2, XOR 2, OR 1 1ビット全加算器のMIL記法表現 入力x, y, cin : スイッチ端子D0, D1, D2 出力s, cout : LED端子I0, I1

1ビット全加算器の真理値表

(応用) 7セグメントLEDへの出力 7セグメントLEDの+5V端子(実験ボード右奥)と電源+5V端子を接続 LED端子I0への接続を外し,7セグメントLEDのA端子につなぎかえる 同様にI1からB端子につなぎかえる スイッチのON, OFFを切り替えると,7セグメントLEDに出力が数字として表示される

(発展) 7セグメントLEDとは 7セグメントLEDは,通常4ビットの入力 (0~15) を受け取り,7本の LED の点灯/非点灯によって, 16種類の文字を表示する. 0 1 2 3 4 5 6 7 8 9 A b c d E F

(発展) 7セグメントLEDの原理 7セグメントLEDは組合せ回路によって構成される 4ビットの入力パターンに応じて,a~gの出力が文字を形作るようにON/OFF (1/0) を定める 例: 数字「0」を表示する場合 a~f の LED が ON (1) g の LED のみが OFF (0)

(発展) 2ビットの演算回路の作成 2ビット全加算器(右図参照) 2ビット減算器(下図参照) 2つの全加算器を組み合わせる 2ビット全加算器にNOTゲート(NANDで作る)を組み合わせる

プッシュスイッチの動作確認 DA端子とI0端子を接続 DB端子とI1端子を接続 プッシュスイッチを押すと,対応する端子に接続されたLEDが点灯する

同期式RSフリップフロップの作成 MIL記法表現と特性表 MIL記法と実験ボードの対応 クロック信号cが1の間だけ入力s, rを受け付ける クロック信号c : スイッチ端子D0 入力s, r : プッシュスイッチの端子DA, DB 出力q, q : LED端子I0, I1

クロック発振器の動作確認 クロック発振器の+5V端子と電源+5V端子を接続 CK端子とI9端子を接続 Hz切り換えスイッチを1Hz側にする 約1秒ごとにLEDが点灯と消灯を繰り返す

クロック発振器と同期式RSフリップフロップの接続 スイッチのD0端子をクロック発振器CK端子に変更 クロック信号がonのときのみ入力を受け付ける

ICトレーナーを使った組合せ回路実習

1ビット半加算器の作成 ANDゲートとXORゲートを1つずつ使用 1ビット半加算器のMIL記法表現と真理値表 D0 D0 D1 I0 I1