絵解き アンテナアナライザによるコイルのQ測定 Koji Takei (jg1pld@jarl.com) jg1pld.

Slides:



Advertisements
Similar presentations
円線図とは 回路の何らかの特性を複素平面上の円で表したもの 例えば、ZLの変化に応じてZinが変化する様子 Zin ZL
Advertisements

pn接合容量測定実験装置の製作 発表者:石田 俊介 指導者:前川 公男 教官 では、只今から前川卒研班、石田による中間発表を行います。
ディジタル信号処理 Digital Signal Processing
近傍磁界を用いた廉価なモーションキャプチャ装置の試作評価
JeeYoung Hong, Tokyo Tech.
放射線計測エレクトロニクスの信号処理の為の アナログ電子回路の基礎 第五回
5.アンテナの基礎 線状アンテナからの電波の放射 アンテナの諸定数
1.Atwoodの器械による重力加速度測定 2.速度の2乗に比例する抵抗がある場合の終端速度 3.減衰振動、強制振動の電気回路モデル
エレクトロニクスII 第13回増幅回路(2) 佐藤勝昭.
USB2.0対応PICを用いたデータロガーの製作
第 4 章 : 一般回路の定理 4.3 ノートンの定理 ノートンの定理 キーワード : ノートンの定理を理解する. 学習目標 :
ー 第3日目 ー ねじれ型振動子のブラウン運動の測定
電子回路Ⅰ 第2回(2008/10/6) 今日の内容 電気回路の復習 オームの法則 キルヒホッフの法則 テブナンの定理 線形素子と非線形素子
電気回路学Ⅱ エネルギーインテリジェンスコース 5セメ 山田 博仁.
直流電圧計,直流電流計 例えば,電流Iを測定したい E R I E R A 電流計の読みが 電流 I を示すだろうか 電気電子基礎実験.
電子回路Ⅰ 第12回(2009/1/26) 整流回路、電圧安定化回路.
電子回路Ⅰ 第11回(2009/1/19) 電力増幅.
2.伝送線路の基礎 2.1 分布定数線路 2.1.1 伝送線路と分布定数線路 集中定数回路:fが低い場合に適用
IPv6アドレスによる RFIDシステム利用方式
電気回路第1 第13回 ー交流回路ー 電気回路第1スライド13-1 目次 2前回の復習 3RLC並列(共振)回路 4RLC並列回路の計算
計測工学 ブリッジ・フィルタ・ノイズ・AD変換
第7回 フィルタとは.
情報電子実験Ⅰ-説明 測定器の使い方.
[4]オシロスコープ(2) 目的 オシロスコープで位相差を測定する CR回路で各位相差になる周波数を計算(実1)
電気回路学Ⅱ エネルギーインテリジェンスコース 5セメ 山田 博仁.
電気回路学Ⅱ 通信工学コース 5セメ 山田 博仁.
メカトロニクス 12/8 OPアンプ回路 メカトロニクス 12/8.
アクティブフィルタによるW-CDMA受信機の歪抑制に関する検討
4.給電線と整合回路 給電線:送信機とアンテナ,アンテナと受信機を結ぶ伝送線路 4.1 各種伝送線路
分布定数回路(伝送線路)とは 電圧(電界)、電流(磁界)は回路内の位置に依存 立体回路 TE, TM波
サンテクノ技術セミナー 高周波技術入門 講座テキスト その2 平成18年6月2日.
電気回路第1 第11回 ー電力の計算と演習ー 電気回路第1スライド11-1 目次(クリックすると移動します。) 2先週の復習 3電力の復習
+電源端子 30mV 出力 30mV 出力 +入力端子 出力端子 -入力端子 入力 入力 -電源端子 -3mV 3mV -3mV 3mV
電力 P ( Power ) 単位 ワット W = J / sec
コイルのはたらき コイルの5つのはたらきについて説明.
60GHz帯CMOS差動増幅回路の 高CMRR化に関する検討
電気回路学Ⅱ 通信工学コース 5セメ 山田 博仁.
コンピュータサイエンスコース、ナノサイエンスコース4セメ開講
電気回路学 Electric Circuits 情報コース4セメ開講 供給電力最大の法則 山田 博仁.
インダクタの自己共振補正を 考慮したLC-VCOの最適化
基本システムのボード線図 ボード線図による基本システムの同定
供給電力最大の法則 E Z0=R0+jX0 R jX Z=R+jX I (テブナンの定理) R で消費される電力 P は、 電源側 負荷側
低インピーダンス伝送線路を用いたミリ波帯VCOの低雑音化の検討
空洞型ビーム軌道傾きモニターの設計 東北大学 M1 岡本 大典 .
ー 第3日目 ー ねじれ型振動子のブラウン運動の測定
電気回路学Ⅱ コミュニケーションネットワークコース 5セメ 山田 博仁.
等価電源の定理とは 複数の電源を含む回路網のある一つの端子対からその回路を見た場合、その回路は、単一の電源(電圧源或いは電流源)と単一のインピーダンスまたはアドミタンスからなるシンプルな電源回路と等価と見なせる。 ただし、上記の定理が成り立つためには、回路網に含まれる全ての電源が同一周波数(位相は異なっていても良い)の電源であることと、回路が線形である(重ね合わせの理が成り立つ)ことが前提となる。
等価電源の定理とは 複数の電源を含む回路網のある一つの端子対からその回路を見た場合、その回路は、単一の電源(電圧源或いは電流源)と単一のインピーダンスまたはアドミタンスからなるシンプルな電源回路と等価と見なせる。 ただし、上記の定理が成り立つためには、回路網に含まれる全ての電源が同一周波数(位相は異なっていても良い)の電源であることと、回路が線形である(重ね合わせの理が成り立つ)ことが前提となる。
ミリ波帯電力増幅器における 発振の検証 ○松下 幸太,浅田 大樹,高山 直輝, 岡田 健一,松澤 昭 東京工業大学
電子回路Ⅰ 第10回(2008/1/7) 電力増幅.
Fourier 変換 Mellin変換 演習課題
電子回路Ⅰ 第8回(2007/12/03) 差動増幅器 負帰還増幅器.
ミリ波帯キャパシティブクロスカップリング差動増幅器のための対称交差レイアウトの提案
演習問題1の解説 電源電圧 E, 内部インピーダンスが Z0 の電源に、伝搬定数が g , 特性インピーダンスが Z0, 長さ が l の線路が接続されている。これに等価な電圧源 を求めよ。さらに、線路が無損失なら、それはどのように表わせるか? ただし、sinh(iθ) = i sinθ, cosh(iθ)
RC結合増幅回路 トランジスタの高周波特性 ダーリントン接続、カレントミラー回路
電子回路Ⅰ 第9回(2008/12/15) 差動増幅器 負帰還増幅器.
インピーダンスp型回路⇔T型回路間での変換
電気回路学Ⅱ エネルギーインテリジェンスコース 5セメ 山田 博仁.
電気回路学Ⅱ コミュニケーションネットワークコース 5セメ 山田 博仁.
Photo detector circuit of KAGRA interferometer (based on LIGO circuit)
電力フィードバック回路の調整による 熱音響発電機の発振余裕の最大化
誘導起電力は 巻数と 磁束の時間変化 に比例する.
電気回路学 Electric Circuits 情報コース4セメ開講 F行列 山田 博仁.
RC結合増幅回路 トランジスタの高周波特性 ダーリントン接続、カレントミラー回路
電気回路学Ⅱ 通信工学コース 5セメ 山田 博仁.
物理学実験 II ブラウン運動 ー 第2日目 ー 電気力学結合系の特性評価 物理学実験II (ブラウン運動) 説明資料.
電源の内部インピーダンス(抵抗)とは? 乾電池(1.5V)の等価回路を描いてみよう もし、等価回路がこのようなら、
圧電素子を用いた 高エネルギー素粒子実験用小型電源の開発
二端子対網の伝送的性質 終端インピーダンス I1 I2 -I2 z11 z12 z21 z22 E ZL: 負荷インピーダンス V1 V2
電気回路学Ⅱ 通信工学コース 5セメ 山田 博仁.
Presentation transcript:

絵解き アンテナアナライザによるコイルのQ測定 Koji Takei (jg1pld@jarl.com) jg1pld

最近のアンテナアナライザは高機能化している ・周波数の自動スイープ ・複素インピーダンスの測定(ベクトル測定) そして低価格なこと Bluetooth®によりPCと無線接続可 アンテナ直下での測定に便利 RigExpert, AA-シリーズの最安値はAA-30: US $244.95 mini-VNA Pro BT •Frequecy range 0.1 to 200MHz • Range of impedance Z from 1 to 1000 Ohms •Two ports VNA with S11 and S12 display •Built in Bluetooth® Adaptor • 389.00 € AA-170 • Frequency range: 0.1 to 170 MHz • R and X range: 0...1000, -1000…1000 • USB connection to a PC • $394.95 jg1pld

コイルの直接接続測定 コイルのQu(無負荷Q) Qu=Xs/Rs Z=Rs+jXs Xs Xs=ωL (ω=2πf) Rs アンテナアナライザの測定精度 1・測定レンジは広くない  1Ω< Rs, Xs <1000 Ω      ↓  high-QコイルのXsとRsを同時に精度良く測定するのは困難 2・位相誤差(Δφ)の影響 例)L=10µH、Qu=300のコイルは10MHzでXs=628Ω、Rs=2.09Ω 位相誤差:Δφ=1°があったとするとΔRs = Xs・tan(Δφ) = 628*0.017=10.7 [Ω] 本来のRsとはかけ離れた値を表示する可能性 L R Antenna Analyzer コイルのQu(無負荷Q) Qu=Xs/Rs Rs Xs Z=Rs+jXs Xs=ωL (ω=2πf) jg1pld

直列共振法 Z=R+j(ωL -1/ωC) +ωL ω0L -1/ω0C=0 ∴ Z0=R R -1/ωC L 共振点で R C Antenna Analyzer 共振点で ω0L -1/ω0C=0 ∴ Z0=R R -1/ωC コイルのリアクタンス成分を打ち消すためCを入れて純抵抗Rを測定、 別の測定で求めたL値からQ(= ω0L/R)を計算して求める Rが小さすぎると(数Ω以下)、アンテナアナライザの測定精度が悪化        ↓ 小さなRは測定できない jg1pld

周波数掃引により共振バンド幅を測定する 並列共振回路のインピーダンスは L C R 共振点近傍のインピーダンス計算例 Antenna Analyzer 共振点近傍のインピーダンス計算例 L=10µH(Qu=300) R=2.09Ω C=25.33pF 共振周波数:10MHz インピーダンスが大きすぎ、アンテナアナライザの測定レンジ外!! jg1pld

インピーダンス曲線をもう少し詳しく調べてみると Rsピークの半値幅(ω2-ω1)が3dBバンド幅に相当 jg1pld

共振回路本体に手を加えることなく、簡便に結合度を調節できる(c)方式が便利 インピーダンス変換により、 アンテナアナライザの測定レンジに合わせる (a) 容量分割方式 (b) インダクタンス分割方式 (c) トランス方式 共振回路本体に手を加えることなく、簡便に結合度を調節できる(c)方式が便利 Antenna Analyzer L C d dをかえて結合度を調節 L1 jg1pld

L1(リンクコイル)にあらわれるインピーダンスの計算式 LとL1の相互インダクタンス: (kは結合係数) 等価 Rsがアンテナアナライザの測定レンジに収まるようLxの大きさを調整する 共振点(ω0)では Rsピークの半値幅が3-dBバンド幅に相当 jg1pld

インピーダンスの計算例 共振回路 L=10µH、R=2.09Ω(Qu=300) BW=33 kHz C=25.3pF(f0=10MHz) (半値幅) リンクコイル L1=0.16µH (ワンターン) 計算で仮定した結合係数 k=0.13 Lx=k√(L・L1)=0.165µH BW=33 kHz (SWR=2.62) jg1pld

インピーダンスの実測例(1) ワンターン・コイルの位置を調節してRs、Xsをアンテナアナライザの測定レンジに収める AA-30にワンターン・コイルを装着 C(~25pF) L(~10µH) jg1pld

インピーダンスの実測例(2) Rsピークの半値幅からQを計算すると、 Qu=f0/BW=9997/24.2=413 と求まる BW(半値幅)=24.2 kHz 50Ω整合が取れていなくてもRsピークの半値幅は不変. →測定が簡便 BW(SWR=2.62)=24.5 kHz Rsピークの半値幅にほぼ一致. jg1pld

1.測定対象コイルにキャパシタを接続し共振回路をつくる.このときコイルのQ値よりも十分に大きなQをもつキャパシタを使用する. AA-30を用いたコイルのQ測定法のまとめ 1.測定対象コイルにキャパシタを接続し共振回路をつくる.このときコイルのQ値よりも十分に大きなQをもつキャパシタを使用する. 2.AA-30の入力端子にリンクコイルを接続する. 3.共振ピークの高さがAA-30の測定レンジに収まるように、リンクコイルと測定対象コイルの間隔を調節する. 4.Rsピークの半値幅を読み取る.共振周波数をこの半値幅で割ればQuが得られる. jg1pld

アンテナアナライザの入力抵抗はQ値に影響を及ぼすか? 付録 アンテナアナライザ(AA-30)を使い始めてしばらくの間、無意識のうちに下記(2)の誤りを犯していました。しかしよくよく考えてみると、AA-30の入力回路(ブリッジ)の抵抗値に関係なくAA-30は測定対象物(LCRネットワーク)のインピーダンスを正しく計算するはずです。そうでないとインピーダンス測定器ではなくなってしまいますから。したがって、測定したインピーダンス曲線が示すQ値は測定対象物固有の無負荷Qでなければならないわけです。 加齢なる誤解から脱出できたかな アンテナアナライザの入力抵抗はQ値に影響を及ぼすか? (1)AA-30の入力抵抗は110~120Ωなので、これを共振回路に結合すると共振回路のQ(負荷Q:QL)は低下する ----- 正しい (2)AA-30で測定されるインピーダンスにはAA-30の入力抵抗を加味したQL(負荷Q)が反映される ----- 誤り AA-30で測定されるインピーダンスは、AA-30の入力抵抗に関係なくQu(無負荷Q)を反映する jg1pld