生体分子解析学 2019/1/16 2019/1/16 機器分析 分光学 X線結晶構造解析 質量分析 熱分析 その他機器分析.

Slides:



Advertisements
Similar presentations
定量分析 分光光度計 その 1. 目的の溶液の吸光度を測ることでそ の濃度が分かる。 既知の濃度の溶液の吸光度を測定 することで、その濃度に対する吸 光度が分かる。 では、吸光と は?
Advertisements

無機化学 I 後期 木曜日 2 限目 10 時半〜 12 時 化学専攻 固体物性化学分科 北川 宏 301 号室.
2005/5/25,6/1 メゾスコピック系の物理 (物理総合) 大槻東巳 (協力 : 吉田順司, 2003 年 3 月上智大学理学博士 )  目次 1 )メゾスコピック系とは 2 )舞台となる 2 次元電子系 3 )バリスティック系の物理 コンダクタンスの量子化 クーロン・ブロッケード 4 )拡散系の物理.
紫外線と赤外線. 波長の違い 紫外線の波長 15nm ~ 380nm 可視光線の波長 380nm ~ 770nm 赤外線の波長 770nm ~ 1mm 電磁波の波長の大小 ガンマ線<X線<紫外線<可視光線<赤外線<電波.
光・放射線化学 4章 4.4 FUT 原 道寛.
電子物性第1 第4回 ーシュレーディンガーの波動方程式ー 電子物性第1スライド4-1 目次 2 はじめに 3 Ψがあると電子がある。
生体分子解析学 2017/3/2 2017/3/2 機器分析 分光学 X線結晶構造解析 質量分析 熱分析 その他機器分析.
電磁気学C Electromagnetics C 7/27講義分 点電荷による電磁波の放射 山田 博仁.
医薬品素材学 I 3 熱力学 3-1 エネルギー 3-2 熱化学 3-3 エントロピー 3-4 ギブズエネルギー 平成28年5月13日.
較正用軟X線発生装置のX線強度変化とスペクトル変化
       光の種類 理工学部物理科学科 07232034 平方 章弘.
物理化学(メニュー) 0-1. 有効数字 0-2. 物理量と単位 0-3. 原子と原子量 0-4. 元素の周期表 0-5.
実習B. ガンマ線を測定してみよう 原子核・ハドロン研究室 永江 知文 新山 雅之 足立 智.
電子物性第1 第5回 ー 原子の軌道 ー 電子物性第1スライド5-1 目次 2 はじめに 3 場所の関数φ 4 波動方程式の意味
生体分子解析学 2017/3/ /3/13 機器分析 分光学 X線結晶構造解析 質量分析 熱分析 その他機器分析.
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛 名列____ 氏名________
生体分子解析学 2017/3/ /3/16 機器分析 分光学 X線結晶構造解析 質量分析 熱分析 その他機器分析.
薬学物理化学Ⅲ 平成28年 4月15日~.
シリカガラスの熱的性質 II ガラス転移,仮想温度 福井大学工学部 葛生 伸.
薬品分析学3.
学年 名列 名前 福井工業大学 工学部 環境生命化学科 原 道寛
Real Time PCR Ver.1.00.
臨床診断総論 画像診断(3) 磁気共鳴画像 Magnetic Resonance Imaging: MRI その1
量子ビーム基礎 石川顕一 6月 7日 レーザーとは・レーザーの原理 6月21日 レーザー光と物質の相互作用
原子核 atomic nucleus (陽子+中性子) 電子 electron e e- b線 陽子 proton H+
2次元蛍光放射線測定器の開発 宇宙粒子研究室 氏名 美野 翔太.
生物機能工学基礎実験 2.ナイロン66の合成・糖の性質 から 木村 悟隆
有機EL材料を用いた 新しいシンチレーターの開発
前回の内容 結晶工学特論 第5回目 Braggの式とLaue関数 実格子と逆格子 回折(結晶による波の散乱) Ewald球
黒体輻射とプランクの輻射式 1. プランクの輻射式  2. エネルギー量子 プランクの定数(作用量子)h 3. 光量子 4. 固体の比熱.
IR スペクトルとは 分子に波数 4000 – 400 cm-1 の赤外線をあて,その吸収の様子を調べる分析法
ナノデザイン特論2 レーザーの基礎
前期量子論 1.電子の理解 電子の電荷、比電荷の測定 2.原子模型 長岡モデルとラザフォードの実験 3.ボーアの理論 量子化条件と対応原理
量子ビーム基礎 石川顕一 6月 7日 レーザーとは・レーザーの原理 6月21日 レーザー光と物質の相互作用
光電子分光 物質中の電子の束縛エネルギー(IP)を測定する方法 IP=hn – K.E. 物質の性質~(外殻)電子の性質
機器分析学 2019/1/16 分光学 X線結晶構造解析 質量分析 熱分析 その他機器分析.
黒体輻射 1. 黒体輻射 2. StefanのT4法則、 Wienの変位測 3. Rayleigh-Jeansの式
前回の講義で水素原子からのスペクトルは飛び飛びの「線スペクトル」
電磁気学C Electromagnetics C 7/17講義分 点電荷による電磁波の放射 山田 博仁.
第1回講義 化学I 電子科学研究所 玉置信之.
原子核物理学 第2講 原子核の電荷密度分布.
22章以降 化学反応の速度 本章 ◎ 反応速度の定義とその測定方法の概観 ◎ 測定結果 ⇒ 反応速度は速度式という微分方程式で表現
プラズマ発光分光による銅スパッタプロセス中の原子密度評価
高エネルギー天体グループ 菊田・菅原・泊・畑・吉岡
量子力学の復習(水素原子の波動関数) 光の吸収と放出(ラビ振動)
分子軌道理論(Molecular Orbital theory, MO理論)
機器分析学 X線による分析法 ー回折法ー (単結晶)X線結晶構造解析 粉末X線回折法 ーその他 X線分光法 等ー.
2.4 Continuum transitions Inelastic processes
学年   名列    名前 物理化学 第2章 2-1、2-2 Ver. 2.1 福井工業大学  原 道寛 HARA2005.
電磁気学Ⅱ Electromagnetics Ⅱ 8/11講義分 点電荷による電磁波の放射 山田 博仁.
機器分析学 旋光度 旋光分散スペクトル 円偏光二色性(CD)スペクトル.
偏光X線の発生過程と その検出法 2004年7月28日 コロキウム 小野健一.
機器分析学 赤外吸収スペクトル ラマンスペクトル.
今後の予定 (日程変更あり!) 5日目 10月21日(木) 小テスト 4日目までの内容 小テスト答え合わせ 質問への回答・前回の復習
これらの原稿は、原子物理学の講義を受講している
第12回 銀河とその活動現象 東京大学教養学部前期課程 2017年度Aセメスター 宇宙科学II 松原英雄(JAXA宇宙研)
今後の予定 7日目 11月12日 レポート押印 1回目口頭報告についての説明 講義(4章~5章),班で討論
機器分析学 2019/4/30 分光学 X線結晶構造解析 質量分析 熱分析 その他機器分析.
生体分子解析学 2019/5/6 2019/5/6 機器分析 分光学 X線結晶構造解析 質量分析 熱分析 その他機器分析.
マイクロ波生成プラズマの分光測定 環境計測 高橋 順三.
振動分光・電気インピーダンス 基礎セミナー 神戸大学大学院農学研究科 農産食品プロセス工学教育研究分野 豊田淨彦.
2・1・2水素のスペクトル線 ボーアの振動数条件の導入 ライマン系列、バルマー系列、パッシェン系列.
My thesis work     5/12 植木             卒論題目 楕円偏光照射による不斉合成の ためのHiSOR-BL4の光源性能評価.
化学1 第11回講義 ・吸光度、ランベルト-ベールの法則 ・振動スペクトル ・核磁気共鳴スペクトル.
生体分子解析学 機器分析 分光学 X線結晶構造解析 質量分析 熱分析 その他機器分析.
振幅は 山の高さ=谷の深さ A x A.
学年   名列    名前 物理化学 第2章 2-1、2-2 Ver. 2.0 福井工業大学  原 道寛 HARA2005.
生体分子解析学 2019/11/ /11/10 機器分析 分光学 X線結晶構造解析 質量分析 熱分析 その他機器分析.
60Co線源を用いたγ線分光 ―角相関と偏光の測定―
Presentation transcript:

生体分子解析学 2019/1/16 2019/1/16 機器分析 分光学 X線結晶構造解析 質量分析 熱分析 その他機器分析

2019/1/16 透過度/吸光度と濃度/層長 層長 (l) 吸光度 比例 透過度 層長 (l )

吸光度と層長(3) 吸光度 A として「透過度の逆数」の対数をとると (- ) l0 l l0 log (t0) 2019/1/16 吸光度と層長(3) 吸光度 A として「透過度の逆数」の対数をとると (- ) l0 l l0 l l0 log (t0) A = log A’= log (t0) = - log (t0) = - l 定数 吸光度 A は層長に比例する(Lambertの法則) t(l) 1 A = C•l A ∝ l l

2019/1/16 透過度/吸光度と濃度/層長 層長 (l) 吸光度 比例 透過度 指数関数 (減少) 層長 (l )

透過度と層長(3) 層長 (l) ( ) t(l) = (t0) 吸光度 比例 透過度 指数関数 (減少) ( ) 2019/1/16 透過度と層長(3) 層長 (l) l0 l ( ) t(l) = (t0) 吸光度 比例 透過度 指数関数 (減少) ( ) l0 1 t(l) = (t0) (t0)l = C•(t0)l 透過度と層長 (l ) の関係 t(l) 指数関数 l

透過度/吸光度と濃度/層長 層長 (l) 濃度 (c) 吸光度 比例 透過度 指数関数 (減少) 層長 (l ) 濃度 (c) 2019/1/16 透過度/吸光度と濃度/層長 層長 (l) 濃度 (c) 吸光度 比例 透過度 指数関数 (減少) 層長 (l ) 濃度 (c)

吸光度と濃度 I0 I1 I0 I1 t1 = 層長 (l ) 濃度 (c) I0 I2 I0 I2 t2 = 層長 (l ) 2019/1/16 吸光度と濃度 I0 I1 I0 I1 t1 = (eq. 3) 吸光度 A1 層長 (l ) 1 cm 濃度 (c) I0 I2 I0 I2 t2 = (eq. 5) 吸光度 A2 = 2A1 層長 (l ) 2 cm 濃度 (c ) I0 I2 I0 I2 t1 = 吸光度 A2 = 2A1 層長 (l ) 1 cm 濃度 (c) 吸光度 ∝ 濃度 (c)(Beerの法則)

透過度/吸光度と濃度/層長 層長 (l) 濃度 (c) 関係式 吸光度 比例 比例 A = kcl 透過度 指数関数 (減少) 指数関数 2019/1/16 透過度/吸光度と濃度/層長 層長 (l) 濃度 (c) 関係式 吸光度 比例 比例 A = kcl 透過度 指数関数 (減少) 指数関数 (減少) t = 10(-A) = 10(-kcl) (下記解説参照) A = -log t -log t = A log t = -A t = 10(-A) 解説 (A = kcl を代入) t = 10(-kcl)

透過度と濃度 t = 10(-kcl) t(l) 透過度と濃度 (M )の関係 指数関数 (減少) 注意! 大小関係の 上下が逆 (M) 2019/1/16 透過度と濃度 t = 10(-kcl) t(l) 透過度と濃度 (M )の関係 指数関数 (減少) (M) 注意! 大小関係の 上下が逆 教科書 図1-3

紫外可視吸収を起こす化合物の構造 紫外可視吸収の原因:電子遷移 π→π*遷移 n→π*遷移 π 電子は多重結合を有した化合物にしか存在しない 2019/1/16 紫外可視吸収を起こす化合物の構造 紫外可視吸収の原因:電子遷移 π→π*遷移 n→π*遷移 π 電子は多重結合を有した化合物にしか存在しない 化合物 吸収極大波長 短 波長 長 共役系 短 長 ethene (H2C=CH2) 165 nm H2C=CH−CH=CH2 217 nm H2C=CH−CH=CH−CH=CH2 256 nm 455 nm

まとめ サンプル溶液 単色光 入射光強度: I0 透過光強度: I I0 I t = 透過度 (t)(無次元): I0 I T = ×100 2019/1/16 まとめ サンプル溶液 単色光 入射光強度: I0 透過光強度: I I0 I t = 透過度 (t)(無次元): (eq. 1) I0 I T = ×100 透過率 (T)(%): (eq. 2) t 1 吸光度 (A)(無次元): A = log = −log t Lambert−Beerの法則: A = εcl = cl E 1% 1cm

演習 1. 透過度が 0.001 の時、吸光度はいくつか計算しなさい. 2. 吸光度が 2 の時、透過度はいくつか計算しなさい. 2019/1/16 演習 1. 透過度が 0.001 の時、吸光度はいくつか計算しなさい. 2. 吸光度が 2 の時、透過度はいくつか計算しなさい. 3. 下記の方程式を x について解きなさい. 5 = log(x) 5x = 10 4. サンプル溶液の層長(光路長)が 1 cm の時、吸光度が 1 で   あった。この溶液の層長が 2 cm になった時、透過光は入射光   の何倍になるか答えなさい。 必要なら以下の数値を使いなさい。 log 2 = 0.301, log 5 = 0.699

演習 4. サンプル溶液の層長(光路長)が 1 cm の時、吸光度が 1 で あった。この溶液の層長が 2 cm になった時、透過光は入射光 2019/1/16 演習 4. サンプル溶液の層長(光路長)が 1 cm の時、吸光度が 1 で   あった。この溶液の層長が 2 cm になった時、透過光は入射光   の何倍になるか答えなさい。 層長(光路長): 1 cm → 2 cm 吸光度: 1 → 2 (Lambert-Beerの法則より) A = − log t → 2 = − log t → t = 10-2 → t = 0.01 I0 I ここで t =   より、 = 0.01 I0 I 即ち、透過光 (I) は入射光 (I0) の 0.01 倍

宿題 1. 吸光度が 2 の時、入射光に対する透過光の割合はいくつか. 2. 吸光度が 3 の時、入射光に対する透過光の割合はいくつか. 2019/1/16 宿題 1. 吸光度が 2 の時、入射光に対する透過光の割合はいくつか. 2. 吸光度が 3 の時、入射光に対する透過光の割合はいくつか. 3. 問題1,2の結果から、吸光度3以上の測定が難しいことを説明し なさい. 予習 4. 分子が赤外線を吸収する要因を説明しなさい。 解らない場合、P45, P51の赤外吸収スペクトルについてまとめ て下さい。

演習 1. 吸光度が 2 の時、入射光に対する透過光の割合はいくつか. 2019/1/16 演習 1. 吸光度が 2 の時、入射光に対する透過光の割合はいくつか. A = − log t → log t = − A → t = 10(− A) = 10(− 2) = 0.01 = I/I0 2. 吸光度が 3 の時、入射光に対する透過光の割合はいくつか. A = − log t → log t = − A → t = 10(− A) = 10(− 3) = 0.001 = I/I0 3. 問題1,2の結果から、吸光度3以上の測定が難しいことを説明し なさい. 吸光度2のとき、この時点で透過度が0.01 = 1/100となる。吸光度 が3になると、透過度は0.001 = 1/1000となる。吸光度がI/I0なので 強度が1000倍以上違う光強度の比を正確にとるためには1/1000 の光の強度を入射光と同程度の有効桁数で正確に決定しなけれ ばならないが、それは困難 (1 mの定規で1 mm前後の長さを有効 桁数3桁で測定するような難しさ)。

赤外光領域の分光法・物理的背景 波長 短 長 マイクロ 波 γ線 X線 赤外線 ラジオ波 高 E (光子のエネルギー;単位: J) 低 2019/1/16 赤外光領域の分光法・物理的背景 高 E (光子のエネルギー;単位: J) 低 波長 短 長 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 (m) 紫外線 可視光線 マイクロ 波 γ線 X線 赤外線 ラジオ波 電子による X線の弾性散乱 分子の 回転運動 核スピンの 反転 物理現象 電子遷移 分子振動 紫外可視 分光法 回転 分光法 赤外分光法 X線結晶構造 解析 NMR 分光法 測定法 蛍光 分光法 ラマン 分光法 ESR 分光法 CD, ORD 旋光度 回折法 分光法

赤外光領域の分光法・物理的背景 波長 短 長 マイクロ 波 γ線 X線 赤外線 ラジオ波 高 E (光子のエネルギー;単位: J) 低 2019/1/16 赤外光領域の分光法・物理的背景 高 E (光子のエネルギー;単位: J) 低 波長 短 長 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 (m) 紫外線 可視光線 マイクロ 波 γ線 X線 赤外線 ラジオ波 電子による X線の弾性散乱 分子の 回転運動 核スピンの 反転 物理現象 電子遷移 分子振動 紫外可視 分光法 回転 分光法 赤外分光法 X線結晶構造 解析 NMR 分光法 測定法 蛍光 分光法 ラマン 分光法 ESR 分光法 CD, ORD 旋光度 回折法 分光法

赤外光領域の分光法・物理的背景 赤外分光法 (赤外吸収スペクトル) ラマン分光法 (ラマンスペクトル) 波長 短 長 マイクロ 波 γ線 2019/1/16 赤外光領域の分光法・物理的背景 高 E (光子のエネルギー;単位: J) 低 波長 短 長 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 (m) 紫外線 可視光線 マイクロ 波 γ線 X線 赤外線 ラジオ波 赤外分光法 (赤外吸収スペクトル) ラマン分光法 (ラマンスペクトル) 化合物による赤外線領域の波長の光の吸収を取り扱う分光法

赤外光領域の分光法・物理的背景 波長 短 長 マイクロ 波 γ線 X線 赤外線 ラジオ波 高 E (光子のエネルギー;単位: J) 低 2019/1/16 赤外光領域の分光法・物理的背景 高 E (光子のエネルギー;単位: J) 低 波長 短 長 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 (m) 紫外線 可視光線 マイクロ 波 γ線 X線 赤外線 ラジオ波 電子による X線の弾性散乱 分子の 回転運動 核スピンの 反転 物理現象 電子遷移 分子振動

赤外光領域の分光法・物理的背景 分子振動 赤外吸収の原因 (ラマン散乱の原因) 波長 短 長 マイクロ 波 γ線 X線 赤外線 ラジオ波 高 2019/1/16 赤外光領域の分光法・物理的背景 高 E (光子のエネルギー;単位: J) 低 波長 短 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 (m) 長 紫外線 可視光線 マイクロ 波 γ線 X線 赤外線 ラジオ波 分子振動 赤外吸収の原因 (ラマン散乱の原因)

赤外光領域の分光法・物理的背景 H2 分子振動 H H H 赤外吸収の原因 (ラマン散乱の原因) 波長 短 長 マイクロ 波 γ線 X線 2019/1/16 赤外光領域の分光法・物理的背景 高 E (光子のエネルギー;単位: J) 低 波長 短 長 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 (m) 紫外線 可視光線 マイクロ 波 γ線 X線 赤外線 ラジオ波 水素分子 H2 分子振動 H 結合が 伸縮する H 赤外吸収の原因 (ラマン散乱の原因) H 原子は重り、共有結合はバネ

赤外光領域の分光法・物理的背景 分子振動 赤外吸収の原因 (ラマン散乱の原因) 波長 短 長 マイクロ 波 γ線 X線 赤外線 ラジオ波 2019/1/16 赤外光領域の分光法・物理的背景 高 E (光子のエネルギー;単位: J) 低 波長 短 長 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 (m) 紫外線 可視光線 マイクロ 波 γ線 X線 赤外線 ラジオ波 振動の激しさのレベル 分子振動 ポテンシャル エネルギー 赤外領域 の振動数 赤外吸収の原因 (ラマン散乱の原因) ΔE = hν 注意:分子のレベルでは振動のエネルギーも量子化(とびとび)

2019/1/16 分子振動 伸縮振動 変角振動 H H H O H H O 結合角が変動する振動 結合が伸縮する振動 その他多数

マイクロ波領域の物理現象 H O 波長 短 長 マイクロ 波 γ線 X線 赤外線 ラジオ波 高 E (光子のエネルギー;単位: J) 低 2019/1/16 マイクロ波領域の物理現象 高 E (光子のエネルギー;単位: J) 低 波長 短 長 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 (m) 紫外線 可視光線 マイクロ 波 γ線 X線 赤外線 ラジオ波 電子による X線の弾性散乱 分子の 回転運動 核スピンの 反転 物理現象 電子遷移 分子振動 H O

分子回転の激しさのレベル(量子化:とびとび) 2019/1/16 マイクロ波領域の物理現象 高 E (光子のエネルギー;単位: J) 低 波長 短 長 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 (m) 紫外線 可視光線 マイクロ 波 γ線 X線 赤外線 ラジオ波 電子による X線の弾性散乱 分子の 回転運動 核スピンの 反転 物理現象 電子遷移 分子振動 分子回転の激しさのレベル(量子化:とびとび) H O マイクロ波 領域の振動数 ポテンシャル エネルギー ΔE = hν

原子スペクトル分光法 (発光) Na 原子発光 波長 短 長 マイクロ 波 γ線 X線 赤外線 ラジオ波 ν = ~589 nm 2019/1/16 原子スペクトル分光法 (発光) 高 E (光子のエネルギー;単位: J) 低 波長 短 長 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 (m) 紫外線 可視光線 マイクロ 波 γ線 X線 赤外線 ラジオ波 電子による X線の弾性散乱 分子の 回転運動 核スピンの 反転 物理現象 電子遷移 分子振動 Na ν = ~589 nm 3p 1s 2s 2p 3s 3p ΔE = hν 熱励起 3s ポテンシャル エネルギー 2p 発光 2s 原子発光 1s

原子スペクトル分光法 (吸光/発光) Na 原子吸光 原子発光 波長 短 長 マイクロ 波 γ線 X線 赤外線 ラジオ波 ν 2019/1/16 原子スペクトル分光法 (吸光/発光) 高 E (光子のエネルギー;単位: J) 低 波長 短 長 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 (m) 紫外線 可視光線 マイクロ 波 γ線 X線 赤外線 ラジオ波 電子による X線の弾性散乱 分子の 回転運動 核スピンの 反転 物理現象 電子遷移 分子振動 Na ν 原子吸光 ν = ~589 nm 3p 3p ΔE = hν 励起 3s 3s ポテンシャル エネルギー 2p 2p 発光 2s 2s 原子発光 1s 1s

原子スペクトル分光法 (ナトリウムD線) Na ナトリウムランプ 炎色反応 ナトリウムD線 ν = ~589 nm 原子発光 トンネル内の 2019/1/16 原子スペクトル分光法 (ナトリウムD線) トンネル内の オレンジ色のランプ ナトリウムランプ 炎色反応 ナトリウムD線 Na ν = ~589 nm 3p 3p ΔE = hν 熱 熱励起 3s 3s ポテンシャル エネルギー 2p 2p 発光 2s 2s 原子発光 1s 1s

原子スペクトル分光法 (輝線スペクトル) Na 輝線スペクトル ν = ~589 nm 原子発光 発光強度 特定波長上に線状に 2019/1/16 原子スペクトル分光法 (輝線スペクトル) 輝線スペクトル 特定波長上に線状に 現れるスペクトル 発光強度 589 波長 (nm) Na ν = ~589 nm 3p 3p ΔE = hν 熱 熱励起 3s 3s ポテンシャル エネルギー 2p 2p 発光 2s 2s 原子発光 1s 1s

紫外可視吸収の化学的背景 エテンの分子軌道 エテン (エチレン) πz* E = hν πz λ = 165 nm 励起前 励起後 反結合 • • • • • • 反結合 性軌道 πz* 電子励起 E = hν = h(c/λ) πz 結合性 軌道 結合: 6個 λ = 165 nm に相当する エネルギー 結合性軌道: 6個 分子軌道 (σ結合)

紫外可視吸収スペクトル(宿題) リボフラビン 黄色 E = hν その波長の光をたくさん吸収 吸光度が大きいほど 吸光度 波長 (nm) 紫 緑 青色 分子軌道の場合も軌道間のエネルギー差は一定 E = hν = h(c/λ) なぜ分子の紫外可視吸収スペクトルは線スペクトル にならない???

赤外光領域の分光法・物理的背景 波長 短 長 マイクロ 波 γ線 X線 赤外線 ラジオ波 高 E (光子のエネルギー;単位: J) 低 2019/1/16 赤外光領域の分光法・物理的背景 高 E (光子のエネルギー;単位: J) 低 波長 短 長 10-12 10-11 10-10 10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 (m) 紫外線 可視光線 マイクロ 波 γ線 X線 赤外線 ラジオ波 電子による X線の弾性散乱 分子の 回転運動 核スピンの 反転 物理現象 電子遷移 分子振動 紫外可視 分光法 回転 分光法 赤外分光法 X線結晶構造 解析 NMR 分光法 測定法 蛍光 分光法 ラマン 分光法 ESR 分光法 CD, ORD 旋光度 回折法 分光法

ラマン分光(ラマン散乱) ν ν ν ν’ ν ν’ = Δν ν ν’ Δν ラマン散乱 可視光領域の波数 可視光領域の波数 弾性散乱 2019/1/16 ラマン分光(ラマン散乱) 可視光領域の波数 可視光領域の波数 ν ν ν ν’ ラマン散乱 弾性散乱 ν ν’ = Δν (レイリー散乱) 赤外領域の波数 ポテンシャル エネルギー ν ν’ 分子振動への エネルギー供与 Δν

ラマン分光(ラマンスペクトル) ν ν ν ν’ ν ν’ = Δν Δν の波数の吸収(吸光度)のプロット ラマンスペクトル ラマン散乱 2019/1/16 ラマン分光(ラマンスペクトル) 可視光領域の波数 可視光領域の波数 ν ν ν ν’ ラマン散乱 弾性散乱 ν ν’ = Δν (レイリー散乱) 赤外領域の波数 Δν の波数の吸収(吸光度)のプロット ラマンスペクトル 分子振動の情報

ラマン分光(ラマン散乱) ν ν ν ν’ ν ν’ = Δν ν ν’ ν ν’ Δν Δν ラマン散乱 可視光領域の波数 2019/1/16 ラマン分光(ラマン散乱) 可視光領域の波数 可視光領域の波数 ν ν ν ν’ ラマン散乱 弾性散乱 ν ν’ = Δν (レイリー散乱) Stokes線 anti-Stokes線 ポテンシャル エネルギー 分子振動 への エネルギー 供与 分子振動 からの エネルギー 受取 ν ν’ ν ν’ Δν Δν

演習 1. モル吸光係数ε= 500 の分子の 2 mM の溶液の吸光度はいくら 2019/1/16 演習 1. モル吸光係数ε= 500 の分子の 2 mM の溶液の吸光度はいくら か計算しなさい.ただし、層長(光路長)は 1 cm とする. 2. 化合物Aが溶けた溶液を200倍希釈した溶液を 0.5 cm の資料容 器(セル)に入れて吸光度を測ったところ1.2を示した.化合物Aの 希釈前の濃度はいくらか.なお、比吸光度を200とする. (宿題) 原子軌道間の電子遷移に基づく原子スペクトルは線スペク トルとなるが、分子軌道間の電子遷移による紫外可視吸収スペク トルが線スペクトルとならない.その理由を説明しなさい. この問いの解答が解らない場合、3ページの内容を要約すること.

宿題 1. 以下の化合物のうち、紫外可視領域に吸収帯を有する分子は いずれか答えなさい. 2019/1/16 宿題 1. 以下の化合物のうち、紫外可視領域に吸収帯を有する分子は いずれか答えなさい. a) ベンゼン b) グルコース c) アントラセン d) ヘキサン e) シクロプロパン f) 11-cis-retinal g) アデノシン f) グリシン 予習 4. 原子軌道間の電子遷移に基づく原子スペクトルは線スペクトル となるが、分子軌道間の電子遷移による紫外可視吸収スペク トルが線スペクトルとならない.その理由を説明しなさい. 解らない場合、3ページの内容を要約すること.

2019/1/16 連絡 以下の方は講義の後に田中のところにきて下さい. 宮本辰徳君 幸田直己君 竹内悠生君