GRASPを用いた CMB観測LiteBIRD衛星 光学系の検討

Slides:



Advertisements
Similar presentations
だい六か – クリスマスとお正月 ぶんぽう. て form review ► Group 1 Verbs ► Have two or more ひらがな in the verb stem AND ► The final sound of the verb stem is from the い row.
Advertisements

第 5 章 2 次元モデル Chapter 5 2-dimensional model. Contents 1.2 次元モデル 2-dimensional model 2. 弱形式 Weak form 3.FEM 近似 FEM approximation 4. まとめ Summary.
Essay writing rules for Japanese!!. * First ・ There are two directions you can write. ・よこがき / 横書き (same as we write English) ・たてがき / 縦書き (from right to.
VE 01 え form What is え form? え? You can do that many things with え form?
Report of recent DSSD status R. Kiuchi (SNU) 2012/10/20 E07
英語特別講座 疑問文 #1    英語特別講座 2011 疑問文.
All Rights Reserved, Copyright (C) Donovan School of English
五段動詞の歌 ごだんどうしのうた.
日本語の文法 文型(ぶんけい)をおぼえよう!
Chapter 11 Queues 行列.
日本語... ジェパディー! This is a template for you to use in your classroom.
Recognise, ask about and talk about purpose
3月6日(金曜日) 漢字 #6-10 Verbs! (continued) Particles Time References
超小型人工衛星QSAT用アンテナの研究開発
2010年7月9日 統計数理研究所 オープンハウス 確率モデル推定パラメータ値を用いた市場木材価格の期間構造変化の探求 Searching for Structural Change in Market-Based Log Price with Regard to the Estimated Parameters.
ALMA による原始惑星系円盤の観測シミュレーション
Chris Burgess (1号館1308研究室、内線164)
じょし Particles.
What did you do, mate? Plain-Past
Verb Plain Negativeform
Only One Flower in the World
日本人の英語文章の中で「ENJOY」はどういうふうに使われているのか
Noun の 間(に) + Adjective Verb てform + いる間(に) during/while.
There are 5 wearing verbs in Japanese depending on the part of body or the item being worn.
SP0 check.
How do you talk about Positions/ Locations?
Tohoku University Kyo Tsukada
Power Electronics center
Estimating Position Information by Detecting Network-Connection
にほんご JPN101 Oct. 26, 2009 (Monday).
十年生の 日本語 Year 10 Writing Portfolio
Reasonので + Consequence clause
Chapter 4 Quiz #2 Verbs Particles を、に、で
The Sacred Deer of 奈良(なら)
CRLA Project Assisting the Project of
“You Should Go To Kyoto”
Second RF-Gun beamline
Nihongo Japanese 日本ご ‘Numbers ’ & ‘Hiragana Revision’
Topics on Japan これらは、過去のインターンが作成したパワポの写真です。毎回、同じような題材が多いため、皆さんの出身地等、ここにない題材も取り上げるようにしてください。
2018/11/19 The Recent Results of (Pseudo-)Scalar Mesons/Glueballs at BES2 XU Guofa J/ Group IHEP,Beijing 2018/11/19 《全国第七届高能物理年会》 《全国第七届高能物理年会》
点素パス問題に対するアルゴリズム 小林 佑輔 東京大学 大学院情報理工学系研究科 組合せ最適化セミナー 2012 年 7月 13日
Causative Verbs Extensively borrowed from Rubin, J “Gone Fishin’”, Power Japanese (1992: Kodansha:Tokyo) Created by K McMahon.
WLTC Mode Construction
Effective methods for multiplying hypericum oliganthum
全国粒子物理会 桂林 2019/1/14 Implications of the scalar meson structure from B SP decays within PQCD approach Yuelong Shen IHEP, CAS In collaboration with.
くれます To give (someone gives something to me or my family) くれました くれます
クワッドリッジホーンアンテナ (広帯域フィード) を 用いた電波望遠鏡の測地VLBIにおける性能評価
CMB偏光観測衛星: LiteBIRD サイエンスと光学設計について 松村知岳, LiteBIRD collaborations
My Favorite Movie I will introduce my favorite movie.
Where is Wumpus Propositional logic (cont…) Reasoning where is wumpus
日中科学協力による高分散分光: Kodak blue-plus CCD の性能
G. Hanson et al. Phys. Rev. Lett. 35 (1975) 1609
岡山大学 工学部 情報工学科 (大学院自然科学研究科 計算機科学講座) 尺長 研究室
クイズやゲーム形式で紹介した実例です。いずれも過去のインターン作です。
超伝導回路を用いた 物理乱数発生回路の研究
Suzaku and the Results ~1 years after launch Suzaku (朱雀)

著者:大内和夫 著者:大内和夫 著者:大内和夫 著者:大内和夫 著者:大内和夫 著者:大内和夫.
22 物理パラメータに陽に依存する補償器を用いた低剛性二慣性系の速度制御実験 高山誠 指導教員 小林泰秀
2019/4/22 Warm-up ※Warm-up 1~3には、小学校外国語活動「アルファベットを探そう」(H26年度、神埼小学校におけるSTの授業実践)で、5年生が撮影した写真を使用しています(授業者より使用許諾済)。
21 柔軟片持ち梁の振動制御における移動可能なアクチュエータの製作
CMB偏光観測衛星: LiteBIRD サイエンスと光学設計について 松村知岳, LiteBIRD collaborations
The Facilitative Cues in Learning Complex Recursive Structures
小型科学衛星LiteBIRD におけるスキャンの最適化
なりました It has become… ゆうめいに なりました。.
Grammar Point 2: Describing the locations of objects
Measurements of J/ψ with PHENIX Muon Arms in 2003 p+p Collisions
Apply sound transmission to soundproofing
Cluster EG Face To Face meeting 3rd
Improving Strategic Play in Shogi by Using Move Sequence Trees
Presentation transcript:

GRASPを用いた CMB観測LiteBIRD衛星 光学系の検討 木村公洋(1) 井上将徳(1), 伊藤誠 (1),真鍋武嗣(1), 小川英夫 (1), 大西利和 (1), 関本裕太郎 (2), 稲谷順司 (2), 鹿島伸悟 (2), 松村知岳 (3) ,西堀俊幸 (4) , 菅井肇 (5) , 片山伸彦 (5) , 大田泉 (6) , 石野宏和 (7) , 羽澄昌史 (5) (8) Thank you chair man. Good morning. My name is kimihiro kimura, I belong to a Osaka prefecture university. I would like to talk about a characterization of the Lite BIRD telescope using Physical Optics simulation. I hope you will forgive me that I'm not good at English. My talk wants to shorten it for coffee break Osaka Prefecture University National Astronomical Observatory of Japan (NAOJ) Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA) Research and Development Directorate, Japan Aerospace Exploration Agency (JAXA) Kavli Institute for the Physics and Mathematics of the Universe (Kavli-IPMU) Konan University Okayama University High Energy Accelerator Research Organization (KEK)

アウトライン Introduction GRASP simulation Scale model measurement Summery Here is an overview. First, let me briefly introduce , and move on to antenna beam pattern simulation by GRASP GRASP is antenna beam pattern calculation software. and lastly to Scale model measurement and summery. .

1) Introduction At first I talk about antenna introduction

LiteBIRD アンテナ 焦点面サイズ 245mm×425mm アンテナサイズ less than 1.6m×1.6m 冷凍機部分 From space Sub-ref. Detectors Main –ref. 245mm In this talk, I mention a Low frequency telescope (LFT) only. Lite BIRD satellite have a crossed doragone antenna. Crossed dragone antenna consists of an aperture , main –reflector, sub-reflector and detectors. It is for a characteristic of a cross dragon antenna to have large focal plane. Lite Bird focal plane size is a about 245 times 425 square mm area. Also We have to make size less than 1.6m times 1.6m for a satellite telescope. 425mm 冷凍機部分 2019/1/17

クロスドラゴンアンテナ >メリット 大きな焦点面 コンパクトサイズ >デメリット 迷光 多重反射 副鏡 フィード 主鏡 This is a design of Lite BIRD crossed dragone antenna. F number is 3.5. A cross dragon antenna can have the large focal-plane area to the size of the whole. But, The distance between the mirrors is close. We should be careful about multiple reflection and stray light This design, Kashima san designed it by COVE V and Lite Tools , these are optical design software. In mm wave band range, These mirrors are very small to the wavelength. It's difficult to estimate in detail using these software. So We use a GRASP soft ware. This software is often used for a design of a radio telescope, ALMA etc. 主鏡 ~1m 設計:CODE V and Light Tools 評価:CODE V, Light Tools and GRASP 2019/1/17

2) GRASP simulation Next, I mention GRASP simulation and results

GRASPとは GRASP(General Reflector Antenna Software Package)、ticra社 ミラー毎に、反射波は入射波から計算される。 GRASP(General Reflector Antenna Software Package) is simulation software used by Physical optics. Ticra company. @Denmark A reflective wave is calculated from an incident wave every mirror. 1st, We define a feed radiation pattern 2nd , surface current of sub-ref is calculated by incident wave 3rd , The radiating pattern caused by sub-ref.surface current is calculated. In this way, GRASP is calculating beam propagation in turn.

Lite BIRD GRASP シミュレーション 迷光、スピルオーバー、多重反射等 Antenna axis 計算条件 ミラーのみ ミラーと開口 ミラーとフード サイドバッフル Freq. 60 GHz Feed Conical horn 光路 11 paths 副鏡 Feed We calculated a Lite BIRD antenna beam pattern at mainly 4 conditions. Like this. And,,I calculated 60GHz because Calculation time is short, And, Influence of diffracting it is the biggest. And Feed type was defined as conical horn as worst cace. It has many side lobe pattern. 主鏡

今までの望遠鏡ではあまり気にしていなかった。。。

コニカルホーンパターン θ=0deg -110deg 90deg -110deg ホーンの向き This graph’s coordinate is defined like this . Direction of main lobe is about – 110 degree is about correct. -110deg

Lite BIRD GRASP シミュレーション Antenna axis 計算条件 ミラーのみ ミラーと開口 ミラーとフード サイドバッフル 副鏡 Feed We calculated a Lite BIRD antenna beam pattern at mainly 4 conditions. Like this. And,,I calculated 60GHz because Calculation time is short, And, Influence of diffracting it is the biggest. And Feed type was defined as conical horn as worst cace. It has many side lobe pattern. 主鏡

光路設定 we supposed 11 ways of optical paths Case 1 is that direct to the sky from feed horn. Case 2 shows from horn to sub-ref to the sky And, Case 3 is the main path that from horn to sub-ref to main-ref. to the sky In addition to them, Case 4 to 5 means multiple reflection path. Example, Case 4’s path shows from horn to sub-ref, to main-ref, to sub-ref again and to the sky. Moreover, I assumed the paths to the main-ref. directly from Horn.

Optical path (Case1,2,3 feed -> Sub-ref. -> Main-ref.) アンテナビームパターン Optical path (Case1,2,3 feed -> Sub-ref. -> Main-ref.) Main lobe Sub-ref. Main-ref. Feed At farst, I show a case 1,2,3 antenna beam pattern. But, This is not so beautiful pattern.

Optical path (feed -> Sub-ref. -> Main-ref.) アンテナビームパターン Optical path (feed -> Sub-ref. -> Main-ref.) Spillover@sub-ref. Main lobe Spillover @main-ref. Spillover@sub-ref. Because, Influence of spillover at sub-ref and main-ref appears these. Spillover at main-ref.

Optical path (Case1+2+…..+11) アンテナビームパターン Optical path (Case1+2+…..+11) Next, This radiation pattern include all 11 path that we suppose. This doesn't also look too beautiful.

Optical path (Case1+2+…..+11) Antenna beam pattern Optical path (Case1+2+…..+11) Spillover @main-ref. Spillover@sub-ref. There are sidelobe patten by spillover.

Optical path (Case1+2+…..+11) Antenna beam pattern Optical path (Case1+2+…..+11) Case 8 Feed -> Main-ref. -> Sub-ref. -> Main-ref. -> sky Case 6 Feed-> Main-ref.-> sky These sidelobe patterns are caused by a multiple reflection. This is a case6 feed to main-ref to sky This is a case 8 , feed to mainref to subref to mainref again to sky And This is by a case7 Then We set an aperture to reduce a side lobe level. Case 7 Feed -> Main-ref. -> Sub-ref. -> sky

Lite BIRD GRASP シミュレーション Antenna axis 計算条件 ミラーのみ ミラーと開口 ミラーとフード サイドバッフル 副鏡 Feed We calculated a Lite BIRD antenna beam pattern at mainly 4 conditions. Like this. And,,I calculated 60GHz because Calculation time is short, And, Influence of diffracting it is the biggest. And Feed type was defined as conical horn as worst cace. It has many side lobe pattern. 主鏡

Lite BIRD GRASP シミュレーション 計算条件 ミラーのみ ミラーと開口 ミラーとフード サイドバッフル 直径400mm Sum() Like this We absorb spillover and multiple reflection patterns at baffle And The entrance of radio wave assumed it only an aperture. Case 1 Case 2 Case 3 ・・・・・・ Case11 開口 => ビーム        パターン (truncation)

アンテナビームパターン Optical path (Case1+2+…..+11) Black : ミラーのみ Red: 開口 1) 2) 1) Case 8 のサイドローブは低減. 2) ホーンのスピルオーバーは部分的に低減 3) Case 11? は顕在化 This graph shows a radiation pattern from aperture. Black line is mirrors only pattern. And red shows a beam pattern. from aperture 1) Side lobe pattern by Case 8 is reduced. 2) Influence of spillover is left a little. 3) Pattern of Case 11ub appeared 3) Case11 horn – main – sub – main – sub – main – sub - sky

Lite BIRD GRASP シミュレーション Dia. 500mm 計算条件 ミラーのみ ミラーと開口 ミラーとフード サイドバッフル フード(out) 468mm Dia. 400mm フード(in) Sum() Next, we tried reduction of a side robe level by making an aperture a hood (like a pipe) Case 1 Case 2 Case 3 ・・・・・・ Case11 フード(in)=>フード(out) => ビームパターン (truncation) (truncation)

アンテナビームパターン Optical path (Case1+2+…..+11) Red: 開口 Black : フード 1) ホーンスピルオーバーの低減 2) Case 11パターンも 低減 3) フードによってアンテナサイズが大きくなる. 1) 2) Red line is only aperture, And Black line is with hood. Far sidelobe level fell. But …… The antenna size became big by putting a hood.

Lite BIRD GRASP シミュレーション 計算条件 ミラーのみ ミラーと開口 ミラーとフード サイドバッフル Last, We installed Side baffle in front of feed that reduced influence of a multiple reflection by terminating a spillover of feed direct ホーンからのサイドローブ 信号を直接終端する。

アンテナビームパターン Optical path (Case1+2+…..+11) Red: 開口 Black : サイドバッフル 1) ホーンのスピルオーバーは低減 2) Case11が残った。。 1) 2) Red line is a radiation pattern from aperture. Black line is a with side baffle radiation pattern. we can reduce a feed side lobe pattern like a with hood. so We're considering with side baffle design. 2019/1/17

3) Scale model measurement 1/3サイズ スケールモデルを製作、ビームパターン測定. 1/3スケールモデル=> 低価格、扱い 周波数 => 60 GHz×3 => 200 GHz band 目的 シミュレーションとの比較 (multiple reflection etc.) フード、バッフル、サイドバッフル等のデザイン Next, We produce 1/3(one third) models of a LiteBIRD Crossed Dragone antenna and evaluate of an optical characterization. Small model is a easy handing and low cost Measuring Frequency is 60 GHz band multiplied 3 is 200 GHz band A purpose of this experiment are Confirmation of simulation(multiple reflection etc.) And Design of hood, baffle, side-baffle, etc.

1/3 Scale model This photograph is a one third scale model of lite bird crossed dragone antenna. This is a feed horn and multiplier. Subref and mainref.

1/3 Scale model with 黒体 this picture of the antenna which enclosed the environment by ecosorb and installed a hood aperture.

3) Scale model measurement 1) Phase retrieval method Assumed Phase pattern This is a diagram of phase retrieval method. We measure amplitude pattern at different positions. Beam pattern is calculated by the assumed phase and a measured amplifier. We can calculate far field pattern by making a calculation and an experiment agree. It's compared with the amplifier which was measured at the location different from that. We calculated a far field beam pattern. Convergence Fourier trans. Inverse Fourier trans.

Preliminary results These are an preliminary results A is a measured amplitude pattern at 220 mm B is a calculated amplitude pattern at 220 mm C,D are results of at 420 mm The bottoms are the estimated phase pattern. This phase retrieval process converged after about 1000 cycles and rms at Final cycles is about 1 times 10^-9 (degree)

5) Summery 物理光学(GRASP)を用いてクロスドラゴン型光学系の評価を行った。 コンパクト化の為にサイドバッフルを検討した結果、case11以外は軽減することができた。 今後、フードやサイドバッフルの形状を最適化(コンパクトかつサイドローブ軽減)を進める。 また、GRASP計算の検証等のために、1/3スケールモデルの製作を行い、測定評価を進めている。 Last We calculated an antenna beam pattern of Crossed Dragone antenna for Lite BIRD by GRASP(Physical optics method). By installing a diameter of 400 mm aperture, it was possible to lower far-sidelobe level. Also, Side baffle reduces a far-sidelobe level too. We fabricated and measured the beam pattern using the 1/3 scale model antenna. The phase-retrieval method was applied to the evaluation of beam pattern. Now, we are preparing the measurement and analysis.